SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title	1 Subject title Research & Design Internship 4							
2.2 Lecture organize	er							
2.3 Internship organ	izer							
2.4 Year of study	Π	2.5 Semest	ter	II	2.6 Type of assessment	V	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	9	where: 3.2 lecture	-	3.3 internship		9		
3.4 Total hours in the curriculum	126	where: 3.5 lecture	-	3.6 internship		126		
Time distribution								
Study after manuals, syllabuses, bibliography and notes								
Further documentation in libraries, or	n specialized	electronic platforms an	d fieldw	ork		10		
Preparing assignments, portfolios						14		
Tutorials	Tutorials							
Examinations						4		
Other activities:								
3.7 Total hours of individual study 50								
3.9 Total hours per semester	176							
3. 10 Number of credits	8							

4. Prerequisites (where relevant)

4.1 curriculum	• Disciplines from the bachelor's degree in Naval Architecture / Mechanical Engineering.
related	• Full assisted disciplines from the Naval Architecture Master.
4.2 competence related	• Define, analyze, and use appropriate research and design systems.

5. Conditions (where relevant)

5.1. of the lecture	• -
5.2. of the	• Experimental and numerical laboratories within the Research Center "Naval
internship	Architecture", experimental equipment, computers, software, Internet access,
	bibliographic sources.
	• Research and design laboratories at partner internship companies.

6. Spe	cific competences acquired
Professional competences	C4 Advanced design of ship structures - 1 credit C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding 2 credits C6 In-depth knowledge and development of materials and technologies used in offshore engineering - 2 credits
Transversal competences	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture – 1 credit CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval architecture – 1 credit CT3 Assessment of the need for professional training, in the context of the evolution of the field – 1 credit

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	C4.1 Defining and specifying methods, techniques and procedures for describing concepts
subject	specific to the advanced design of ship structures.
	C4.2 Classification and use of methods, techniques and procedures for analyzing concepts
	specific to advanced design of new ship structures.
	C5.1 In-depth knowledge, analysis and synthesis of naval technologies.
	C5.2 Use of information sources and specialized knowledge for the analysis, evaluation and
	selection of technological solutions imposed in new situations.
	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore engineering and specific technologies.
	C6.2 Analysis and evaluation of new offshore unit and offshore projects in order to identify optimal technological solutions
	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture
	CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval
	architecture
	CT3 Assessment of the need for professional training in the context of the evolution of the
	field
7.2 Specific aims	C4.3 Apply the appropriate methods and techniques for the advanced design of ship
	structures under incomplete information to solve new theoretical problems.
	C4.4 Evaluate and interpret data specific to the advanced design of ship structures to substantiate constructive decisions.
	C4.5 Making models and designing projects that use innovative qualitative and quantitative
	methods specific to the advanced ship structures design. Developing projects using concepts
	specific to the advanced design of ship structures.
	C5.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C5.4 Applying algorithms to assess the performance of new technologies to improve decision
	making.
	C5.5 Innovative use of specific technologies for the purpose of project development.
	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours					
8.2 Internship	Teaching method	Observations Number of hours					
1. Comparison of theoretical, numerical, technological and / or							
experimental results	Research and	126 hours					
2. Highlighting innovative solutions applied in theoretical, numerical,	design						
technological and / or experimental modeling							
3. Highlighting the optimal solutions applied in solving the research topic							
4. Conclusions of theoretical, numerical, technological and / or							
experimental research							
5. Future directions applicable to solving the research topic							
6. Research-design internship report							
Bibliography							
1. Amoraritei, M., "Complements of Marine Propellers Hydrodynamics in Non-uniform Flow", Galati Univ. Press, 2008							
2. Andersson, B., Andersson, R., Hakansson, L., Mortensen, M., Sudiyo,	R., van Wachem, B., '	'Computational Fluid					
Dynamics for Engineers", Cambridge University Press, 2012							

- 3. Betram, V., "Practical Ship Hydrodynamics", (Ed.II) Butterworth Heinemann, Oxford, 2012
- 4. Babicz, J., "Wärtsilä Encyclopedia of Ship Technology", Wärtsilä Corporation, Second Edition, Helsinki, 2015
- 5. Breslin, J.,P., "Hydrodynamics of Ship Propeller", Cambridge University Press, 2003
- 6. BV, "Rules for Classification and Construction", Bureau Veritas, 2023
- 7. Carlton, J., S., "Marine Propellers and Propulsion", Elsevier, 2006
- 8. Domnisoru, L., "Structural Analysis and Hydroelasticity of Ships", The "Dunărea de Jos" University Foundation Publishing House, Galati, 2006
- 9. Domnisoru, L., Lungu, A., Dragomir, D., Ioan, A., "Complements of Structural Analysis and Ship Hydrodynamics", Galati University Press, 2008
- 10. DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2023
- 11. Dragomir, D., Lungu, A., Domnisoru, L., "Naval Architecture Design Complements", "Didactic and Pedagogic" Publising House, Bucharest, 2007
- 12. Eyres, D.J., "Ship Construction", Elsevier Butterworth-Heinemann, New York, 2007
- 13. Ferziger, J.H., Peric, M., "Computational Methods for Fluid Dynamics", Springer-Verlag, Third Edition, 2002
- 14. Ghose, J., P., Gokarn, R., P., "Basic Ship Propulsion", New Delhi, 2004
- 15. Hadar, A., "Multilayer Composite Materials", Academy and AGIR Publishing House, Bucharest, 2002
- 16. Hadar, A., Marin, C., Petre, C., Voicu, A., "Numerical Methods in Engineering ", Politehnica Press, Bucharest, 2005
- 17. Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Butterworth-Heinemann, 2007
- 18. ISO 6954:2000, "Mechanical vibration Guidelines for the measurement, reporting and evaluation of vibration with regard to habitability on passenger and merchant ships", https://www.iso.org/obp/ui/#iso:std:iso:6954:ed-2:v1:en
- 19. ISO 20283-5:2016, "Mechanical vibration Measurement of vibration on ships Part 5: Guidelines for measurement, evaluation and reporting of vibration with regard to habitability on passenger and merchant ships", https://www.iso.org/ obp/ui/#iso:std:iso:20283:-5:ed-1:v1:en
- 20. Lewandowski, E.M., "The Dynamics of Marine Craft", World Scientific, New Jersey, 2004
- 21. LR, "Ship Vibration and Noise. Guidance Notes", Lloyd's Register, London, 2023
- 22. Lungu, A., (Ed) "Numerical Modeling in Engineering", Academica Press, Galati, 2001
- 23. Mandal, N.R., "Ship Construction and Welding", Springer Nature Singapore Pte Ltd., 2017
- 24. Mansour, A., Liu, D., "Strength of Ships and Ocean Structures, The Principles of Naval Architecture Series, SNAME, New Jersey, 2008
- 25. Mocanu, C., "Strength of Materials", "Dunărea de Jos" University Foundation Publishing House, Galati, 2005
- 26. Obreja, D., "Ship theory. Concepts and Methods of Navigation Performance Analysis", "Didactic and Pedagogic" Publishing House, Bucharest, 2005
- 27. Okumoto, Y., Takeda, Y., Mano, M., Okada, T., "Design of Ship Hull Structures A Practical Guide for Engineers", Springer-Verlag, 2009

- 28. Paik, J.K., Thayamballi, A.K., "Ship Shaped Offshore Installations", Cambridge University Press, 2007
- 29. Rao, S.S., "The Finite Element Method in Engineering", Elsevier Science & Technology Books,, New York, 2004
- 30. Rawson, K.J., Tupper E.C., "Basic Ship Theory", (2 vol) Butterworth Heinemann, Oxford, 2001
- 31. Rodolfo, A., White, J., "Dynamic Scheduling with Microsoft Project", International Institute for Learning, 2011
- 32. Serban, D., Gavan, E., "Shipbuilding and Welding Technology", Evrika Publishing House, Brăila, 2001
- 33. Spyridon, E.H., Chunhua, Ge, "Review & Introduction to Hydroelasticity of Ships", Lloyd's Register, London, 2005
- 34. Stoicescu, L., "Strength of Materials", Evrika Publishing House, Braila, 2 vol., 2004
- 35. Storch, R.L., Hammon, C.P., Bunch, H.M. & Moore, R.C., "Ship production", Cornell Maritime Press, 2000
- 36. Schull, P.J., "Nondestructive Evaluation Theory, Techniques, and Applications", Marcel Dekker, New York, 2001
- 37. Versteeg, H., Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Prentice Hall, 2007
- 38. Vlase, S., "Composite Materials. Numerical Methods, "Transilvania" University Publishing House, Braşov, 2007
- 39. Vorus, W.S., "Vibration", The Principles of Naval Architectures Series, SNAME, New Jersey, 2010
- 40. Zienkiewicz, O.C., Taylor, R.L.,"The Finite Element Method" (3 Vol.), Elsevier Butterworth-Heinemann, Oxford, 2000

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The training includes the basic elements for integrating the graduate in the activities of the shipbuilding research and design companies, as well as for Bologna III PhD studies.

10. Hobebonnene								
Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade					
10.4 Lecture								
10.5 Internship	Applying specialized knowledge in research and design activities	 Evaluating the weekly research-design internship that quantifies the rhythmic involvement and accuracy of the results. Evaluation of the research-design internship report. 	70%					
10.6 Minimum performa	10.6 Minimum performance standard (Each evaluation part is marked in the standard reference system 1-10.)							
- The student should pass the current activities in the research and design internship.								
- The student should pas	s with the grade 5 the examination	n of the research-design internship report.						

(AN-M) 0270.2OB011A 2022-2024

OFFICIAL GAZETTE OF ROMANIA, PART I, NO. 880 bis/13.XII.2011 Ministerial Order 5703 / 18.10.2011 ANNEX no. 3 to methodology

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Researc	h for	· Mast	ter Thesis			
2.2 Lecture organize	er							
2.3 Internship organ	izer							
2.4 Year of study	п	2.5 Semest	er	II	2.6 Type of assessment	V	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

5

3.1 Total hours per week	5	where: 3.2 lecture	-	3.3 research for master thesis	5			
3.4 Total hours in the curriculum	70	where: 3.5 lecture	-	3.6 research for master thesis	70			
Time distribution								
Study after manuals, syllabuses, bibliography and notes								
Further documentation in libraries, on specialized electronic platforms and fieldwork								
Preparing chapters for the master the	sis				14			
Tutorials					4			
Examinations								
Other activities:								
3.7 Total hours of individual study	28							
3.9 Total hours per semester	98							

3. 10 Number of credits

4. Prerequisites (where relevant)

4.1 curriculum related	 Disciplines from the bachelor's degree in Naval Architecture / Mechanical Engineering. Full assisted disciplines from the Naval Architecture Master.
4.2 competence related	• Define, analyze, and use appropriate research and design systems.

5. Conditions (where relevant)

5.1. of the lecture	• -
5.2. of the	• Experimental and numerical laboratories within the Research Center "Naval
internship	Architecture", experimental equipment, computers, software, Internet access,
	bibliographic sources.
	• Research and design laboratories at partner internship companies.

6. Spe	cific competences acquired
Professional competences	C2 Hydrodynamic optimization of the hull forms – 1 credit C3 Propulsion system design – 1 credit C4 Advanced design of ship structures – 1 credit C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding – 1 credit C6 In-depth knowledge and development of materials and technologies used in offshore engineering – 1 credit
Transversal competences	

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7. Learning outcomes	(as resulting from the grid of specific competences acquired)
7.1 General aim of the	C2.1 Detailing the methods, techniques and procedures for describing the concepts related to
subject	C2.2 Explaining and sensing the applied hydrodynamics knowledge to the particular problem.
	of a ship hull regardless of its geometry.
	C3.1 Description of the propulsion systems and of the technical vocabulary specific to the
	domain of naval architecture.
	C3.2 Efficient use of the acquired knowledge for explaining and interpreting the propulsion
	system working regimes.
	C4.1 Defining and specifying methods, techniques and procedures for describing concepts
	C4.2 Classification and use of methods, techniques and procedures for analyzing concepts
	specific to advanced design of new ship structures.
	C5.1 In-depth knowledge, analysis and synthesis of naval technologies.
	C5.2 Use of information sources and specialized knowledge for the analysis, evaluation and
	selection of technological solutions imposed in new situations.
	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore
	engineering and specific technologies.
	ontimal technological solutions
7.2 Specific aims	C2.3 Complete use of the conceptual and methodologic apparatus to solve specific hydrodynamics
7.2 Speeme anns	problems related to the optimal design of the hull forms.
	C2.4 Applying criteria and evaluation methods with which the hull forms can be improved.
	C2.5 Argumentation by models and projects of the most appropriate methods for defining the
	optimal forms from a hydrodynamic point of view.
	c.s.s identifying adequate methods, techniques, and procedures for the design of the propulsion systems under the incomplete documentation condition
	C3.4 Data analysis to formulate value judgments and substantiate constructive decisions
	specific to propulsion systems design.
	C3.5 Conduct studies that use innovatory a wide range of quantitative methods specific to
	propulsion systems design.
	C4.3 Apply the appropriate methods and techniques for the advanced design of ship
	structures under incomplete information to solve new theoretical problems. CAA Evaluate and interpret data specific to the advanced design of ship structures to
	substantiate constructive decisions
	C4.5 Making models and designing projects that use innovative qualitative and quantitative
	methods specific to the advanced ship structures design. Developing projects using concepts
	specific to the advanced design of ship structures.
	C5.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	making
	C5.5 Innovative use of specific technologies for the purpose of project development.
	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours
8.2 Internship	Teaching method	Observations Number of hours
Research and design themes in the field of naval architecture, specific to master program, individualized for each master student, which addresses the following main directions: ship hydrodynamics (CFD), ship dynamics (resistance, maneuverability, seakeeping and hydroelasticity), dynamics of ship propulsion systems, ship structures analysis (FEM), offshore systems and units, ship integrated CAD / CAM / CAE systems, experimental noise and vibration analysis, advanced shipbuilding technologies, marine environmental protection, project management technologies. The master thesis will include the following main chapters: -Formulation of the research theme -Presenting the state of art of knowledge in the field of research -Presentation of the theoretical, numerical, experimental, technological study methods applied for the development of the research theme -Achieving the theoretical, numerical, experimental, technological model within the research theme -Case studies corresponding to the master thesis theme -Conclusions of the theoretical, numerical, experimental, technological researches	Research and design	70 hours
 Bibliography Amoraritei, M., "Complements of Marine Propellers Hydrodynamics in No. Andersson, B., Andersson, R., Hakansson, L., Mortensen, M., Sudiyo, Dynamics for Engineers", Cambridge University Press, 2012 Betram, V., "Practical Ship Hydrodynamics", (Ed.II) Butterworth Hein Babicz, J., "Wärtsilä Encyclopedia of Ship Technology", Wärtsilä Corp. Breslin, J.,P., "Hydrodynamics of Ship Propeller", Cambridge Universit BV, "Rules for Classification and Construction", Bureau Veritas, 2018 Carlton, J., S., "Marine Propellers and Propulsion", Elsevier, 2006 Domnisoru, L., "Structural Analysis and Hydroelasticity of Ships", The Publishing House, Galati, 2006 Domnisoru, L., Lungu, A., Dragomir, D., Ioan, A., "Complements of St Galati University Press, 2008 DNV-GL., "Rules for Classification and Construction", Det Norske Ve Dragomir, D., Lungu, A., Domnisoru, L., "Naval Architecture Design Publising House, Bucharest, 2007 Eyres, D.J., "Ship Construction", Elsevier Butterworth-Heinemann, Ne Ferziger, J.H., Peric, M., "Computational Methods for Fluid Dynamics' Hadar, A., "Multilayer Composite Materials", Academy and AGIR Public Hadar, A., Marin, C., Petre, C., Voicu, A., "Numerical Methods in Engin 17. Hirsch, C., "Numerical Computation of Internal and External Flows: Dynamics", Butterworth-Heinemann, 2007 	on-uniform Flow", Gala R., van Wachem, B., ' emann, Oxford, 2012 poration, Second Editio ity Press, 2003 ne "Dunărea de Jos" U ructural Analysis and S ritas & Germanischer I n Complements", "Did w York, 2007 ", Springer-Verlag, Thi 4 blishing House, Buchar eering ", Politehnica P The Fundamentals of	tti Univ. Press, 2008 'Computational Fluid on, Helsinki, 2015 Jniversity Foundation Ship Hydrodynamics'', Lloyd, 2018 actic and Pedagogic'' ird Edition, 2002 rest, 2002 rest, 2002 ress, Bucharest, 2005 Computational Fluid
 ISO 20283-5:2016, "Mechanical vibration" – Guatemics for the measurement of vibration – Measurement of vibration and reporting of vibration with regard to hab https://www.iso.org/ obp/ui/#iso:std:iso:20283:-5:ed-1:v1:en Lewandowski, E.M., "The Dynamics of Marine Craft", World Scientific 	rg/obp/ui/#iso:std:iso:69 ation on ships — Pa bitability on passenger	via 51: 61: violation with 54:ed-2:v1:en art 5: Guidelines for and merchant ships",

- 21. LR, "Ship Vibration and Noise. Guidance Notes", Lloyd's Register, London, 2006
- 22. Lungu, A., (Ed) "Numerical Modeling in Engineering", Academica Press, Galati, 2001
- 23. Mandal, N.R., "Ship Construction and Welding", Springer Nature Singapore Pte Ltd., 2017
- 24. Mansour, A., Liu, D., "Strength of Ships and Ocean Structures, The Principles of Naval Architecture Series, SNAME, New Jersey, 2008
- 25. Mocanu, C., "Strength of Materials", "Dunărea de Jos" University Foundation Publishing House, Galati, 2005
- 26. Obreja, D., "Ship theory. Concepts and Methods of Navigation Performance Analysis", "Didactic and Pedagogic" Publishing House, Bucharest, 2005
- 27. Okumoto, Y., Takeda, Y., Mano, M., Okada, T., "Design of Ship Hull Structures A Practical Guide for Engineers", Springer-Verlag, 2009
- 28. Paik, J.K., Thayamballi, A.K., "Ship Shaped Offshore Installations", Cambridge University Press, 2007
- 29. Rao, S.S., "The Finite Element Method in Engineering", Elsevier Science & Technology Books,, New York, 2004
- 30. Rawson, K.J., Tupper E.C., "Basic Ship Theory", (2 vol) Butterworth Heinemann, Oxford, 2001
- 31. Rodolfo, A., White, J., "Dynamic Scheduling with Microsoft Project", International Institute for Learning, 2011
- 32. Serban, D., Gavan, E., "Shipbuilding and Welding Technology", Evrika Publishing House, Brăila, 2001
- 33. Spyridon, E.H., Chunhua, Ge, "Review & Introduction to Hydroelasticity of Ships", Lloyd's Register, London , 2005
- 34. Stoicescu, L., "Strength of Materials", Evrika Publishing House, Braila, 2 vol., 2004
- 35. Storch, R.L., Hammon, C.P., Bunch, H.M. & Moore, R.C., "Ship production", Cornell Maritime Press, 2000
- 36. Schull, P.J., "Nondestructive Evaluation Theory, Techniques, and Applications", Marcel Dekker, New York, 2001
- 37. Versteeg, H., Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Prentice Hall, 2007
- 38. Vlase, S., "Composite Materials. Numerical Methods, "Transilvania" University Publishing House, Braşov, 2007
- 39. Vorus, W.S., "Vibration", The Principles of Naval Architectures Series, SNAME, New Jersey, 2010
- 40. Zienkiewicz, O.C., Taylor, R.L.,"The Finite Element Method" (3 Vol.), Elsevier Butterworth-Heinemann, Oxford, 2000

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The training includes the basic elements for integrating the graduate in the activities of the shipbuilding research and design companies, as well as for Bologna III PhD studies.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade		
10.4 Lecture					
10.5 Research for master thesis	Applying specialized knowledge in research and design activities	 Evaluating the weekly activity of research for master thesis that quantifies the rhythmic involvement and accuracy of the results. Final evaluation of the master thesis. 	30%		
10.6 Minimum performance standard (Each evaluation part is marked in the standard reference system 1-10.)					
- The student should pass with grade 5 the current activities for the master thesis. - The student should pass the final evaluation of the dissertation with the grade 5.					

(AN-M) 0270.2OB012A 2022-2024

OFFICIAL GAZETTE OF ROMANIA, PART I, NO. 880 bis/13.XII.2011 Ministerial Order 5703 / 18.10.2011 ANNEX no. 3 to methodology

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Master '	Thesi	is Def	ense			
2.2 Lecture organize	er							
2.3 Internship organ	izer							
2.4 Year of study	Π	2.5 Semest	er	II	2.6 Type of assessment	Ε	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

10

3.1 Total hours per week	-	where: 3.2 lecture	-	3.3 master thesis defense	-
3.4 Total hours in the curriculum	-	where: 3.5 lecture	-	3.6 master thesis defense	-
Time distribution					hours
Study after manuals, syllabuses, biblic	graphy and	notes			-
Further documentation in libraries, on	specialized	electronic platforms an	d fieldw	ork	-
Preparing assignments, portfolios				-	
Tutorials			-		
Examinations			-		
Other activities:					-
3.7 Total hours of individual study	-				
3.9 Total hours per semester	-				

3. 10 Number of credits

4. Prerequisites (where relevant)

4.1 curriculum	• Disciplines from the bachelor's degree in Naval Architecture / Mechanical Engineering.
Telateu	• Full assisted disciplines from the Naval Architecture Master.
4.2 competence related	• Define, analyze, and use appropriate research and design systems.

5. Conditions (where relevant)

5.1. of the lecture	•	-
5.2. of the	•	exam room, video projector, computer
internship		

6. Spe	cific competences acquired
Professional competences	C1 Preliminary design of ship's hydrodynamic forms C2 Hydrodynamic optimization of the hull forms C3 Propulsion system design C4 Advanced design of ship structures C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding C6 In-depth knowledge and development of materials and technologies used in offshore engineering
Transversal competences	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture. CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval architecture. CT3 Assessment of the need for professional training, in the context of the evolution of the field.

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	According to the master thesis theme specific to each master student
subject	
7.2 Specific aims	According to the master thesis theme specific to each master student

8. The content of the master thesis defense - thematic of the master thesis projects

8.2 Examples of master thesis topics of the Naval Architecture Master program (2023-2024)	Observations
1. Tension – Leg platforms. Description. Dynamic behavior in waves. installation procedure	
2. Technological processes mounting and testing the mooring systems on offshore unit	
3. Technology of mounting the steering gear system. Testing methodology of the steering gear system	
4. Analysis of stress level for connection of dredging suction pipe with hull	
5. Numerical global-local strength analysis of a river-barge in head equivalent design wave loads by a 3D-FEM model	
6. The floating structure for a wind farm in the Black Sea	
7. The floating turbine for energy generation om rivers	
8. The floating structure for wave energy recovery systems	
9. Assembly technology of the ship in terms of project management	
10. Ship outfitting process from a project management perspective	
11. Analysis of ship propulsion performances for a containership taking into account EEDI requirements.	
12.Hydrodynamic performances investigation for a chemical tank propeller	ter
13.Numerical analysis of added resistance in regular head waves	nas
14.Hydrodynamic investigations on a multihull vessel	hn
15. Solutions for improving ship hull hydrodynamic performance	eac
16. Hydrodynamic characteristics of a self-propelled inland ship	JI (
17. Numerical hydrodynamic analysis of a spar platform subjected to irregular waves	s fc
18. Numerical hydrodynamic analysis of a AHTS vessel in irregular waves	me
19. Pre-outfitting in the assembly stage for a container ship build in Damen Shipyards Mangalia	the
20. Construction and mounting of aluminum superstructure for a trawler built in Vard Tulcea	al
21. Simulation of block erection process for a chemical tanker built in Damen Shipyards Mangalia	idu
22. Assembling procedure for the fore peak block – Damen Shipyards Galati	liv
23. The impact of the quality control into the production process	Inc
24.Methods of improving the economic efficiency of the storing the equipment on board of the vessel prior to the	
commissioning process.	
25. The impact of the cleaning activities against the economic efficiency of the production process	
26.Methods of improving the economic efficiency of the commissioning process during HAT	
27.Bilge Injection System for Sludge Incinerator Onboard of an Oil Tanker	
28. SEVAN Hull Design for FPSOs	
29. The Technology role in Green Ships	
30. Offshore Support Vessel Design — Pipe Lay Vessels	
31. Robotic Welding System for Shipbuilding	
32. Local vibrations on board river ship	
33. Noise assessment for a river vessel	

Bibliography

According to the theme of research-design in the fields of: ship hydrodynamics (CFD), ship dynamics (resistance, maneuverability, seakeeping and hydroelasticity), ship propulsion dynamics, ship structures analysis, offshore systems and units, integrated CAD / CAM / CAE systems, experimental noise and vibration analysis, advanced shipbuilding technologies, marine environmental protection, project management technologies.

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The training includes the basic elements for integrating the graduate in the activities of the shipbuilding research and design companies, as well as for Bologna III PhD studies.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade			
10.4 Lecture						
10.5 Master thesis defense	 The quality of the master thesis project The quality of the presentation of the master thesis project and the answers to the questions formulated by the exam committee 	According to the regulations for final exam of the master's degree studies at "Dunarea de Jos" University of Galati - The arithmetic average of the rating grades of each member of the exam committee.	100%			
10.6 Minimum performance standard (Each evaluation part is marked in the standard reference system 1-10.)						
- Integration of specialized knowledge (master thesis project) - Minimum grade 6						

OFFICIAL GAZETTE OF ROMANIA, PART I, NO. 880 bis/13.XII.2011 Ministerial Order 5703 / 18.10.2011 ANNEX no. 3 to methodology

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Comput	atio	nal Fl	uid Dynamics 2			
2.2 Lecture organizer								
2.3 Project organizer	2.3 Project organizer							
2.4 Year of study	II	2.5 Semest	ter	Ι	2.6 Type of assessment	E+P	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	4	where: 3.2 lecture	2	3.3 project	2	
3.4 Total hours in the curriculum	56	where: 3.5 lecture	28	3.6 project	28	
Time distribution						
Study after manuals, syllabuses, bibliog	graphy and r	notes			20	
Further documentation in libraries, on s	pecialized e	electronic platforms and	l fieldwo	ork	8	
Preparing seminars / labs, assignments, essays, portfolios and essays						
Tutorials						
Examinations						
Other activities 0						
3.7 Total hours of individual study 34						
3.9 Total hours per semester	90					
3. 10 Number of credits	3+3					

4. Prior learning / Prerequisites (where relevant)

4.1 curriculum-re-	– None
lated	
4.2 competence-	– None
related	

5. Conditions (where relevant)

5.1. of the lecture		- The right of sustaining the final examination is strictly conditioned by the delivery in due			
		time of the project, as well as by getting at least the established minimum mark for it.			
5.2. of the project	-	The student attendance of all the scheduled project classes is compulsory.			

6. Specific competences acquired

Professional competences	C2 Hydrodynamic optimization of the hull forms – 6 credits
Transversal competences	Not applicable

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General	C2.1 Detailing the methods, techniques and procedures for describing the concepts related to the hull						
aim of the	forms optimization;						
subject	C2.2 Explaining and sensing the applied hydrodynamics knowledge to the particular problem of a ship						
	hull regardless of its geometry;						
	• The subject strong formative character for the graduate acting either as a practicing engineer in a						
	shipyard or as a researcher in the naval engineering domain. It contributes for the graduate at building						
	up the expertise in the field of numerical simulation of the hydrodynamic processes that describe the						
	unsteady flow around the ship hull.						
7.2 Specific	C2.3 Complete use of the conceptual and methodologic apparatus to solve specific hydrodynamics prob-						
aims	lems related to the optimal design of the hull forms;						
	C2.4 Applying criteria and evaluation methods with which the hull forms can be improved;						
	C2.5 Argumentation by models and projects of the most appropriate methods for defining the optimal						
	forms from a hydrodynamic point of view;						
	• Developing skills for the fundamental-applied research skills in naval architecture;						
	• Developing the fundamentals of the naval architecture and acquiring a good practice in using						
	most advanced techniques in research and design both in Romanian and English;						
	• Developing the capacity of a performant fulfilling in due time of the research, design, planning						
	ordination and control tasks that occur in the daily activity of an engineer;						
	• Developing the capacity of using the computer;						
	• Developing the capacity for numerical simulation of specific hydrodynamic and structural re-						
	sistance problems;						
	• Developing the capacity of acquiring, processing and interpretation of the experimental data;						
	• Developing the capacity of performing in complex and multicultural working teams;						
	• Developing skills in efficient communication in English either face-to-face, or by making use of						
	the modern techniques;						
	• Developing the capacity for quick and efficient adaption in a variety of companies such as research						
	entities, universities, institutes of the Academy and so on.						

8. Contents

8. 1 Lecture	Teaching method	Observations				
Numerical simulation of the boundary layer flow-Thin boundary layer theory. Overview;-Determination of the configuration of the current lines;-Boundary layer equations integration;-Boundary conditions.	S PowerPoint slides displayed on the in- telligent board	(4 hours)				
 Numerical solutions of the Navier-Stokes and continuity equations Mathematical Model; Meshing with finite differences; Treatment of convective terms; Artificial viscosity. 	PowerPoint slides displayed on the in- telligent board	(10 hours)				
Formulation of boundary conditions. Modeling of free surface. types of boundary conditions; inflow boundary; outflow boundary; solid boundary; symmetry boundaries. 	PowerPoint slides displayed on the in- telligent board	(6 hours)				
 Particular flow boundary conditions with free surface Kinematic and dynamic conditions conditions; Euler and Lagrange formulation for kinematic conditions; Wave absorbers. 	PowerPoint slides displayed on the in- telligent board	(1 hour)				
Modeling of turbulent flow – Turbulence models: – Models with 0 equations: – Cebecci-Smith; – Models with 1 equation: – Baldwin-Lomax; – Spallart-Almaras; – Models with 2 equations: – K-ε and K-ω models.	PowerPoint slides displayed on the in- telligent board	(7 hours)				
 References 1. Roache, P.J., "Computational Fluid Dynamics", Hermosa Publishers, 1976 2. Anderson, D.A., Tannehill, J.C., Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer" Mc. Graw-Hill, 1983 						

- 3. Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics", Vols. I & II, Springer-Verlag, 1988
- 4. Hoffman, K.A., Chiang, S.T., "Computational Fluid Dynamics for Engineers", Vols. I & II, Engineering Education system, 1993
- 5. Lungu, A., (Editor), "Lectures in Numerical Simulation in Engineering", Academica Press, 2001;
- 6. Ferziger, J.H., Peric, M., "Computational Methods for Fluid Dynamics", Springer-Verlag, Third Edition, 2002
- 7. Versteeg, H., Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Prentice Hall, 2007
- 8. Andersson, B., Andersson, R., Hakansson, L., Mortensen, M., Sudiyo, R., van Wachem, B., "Computational Fluid Dynamics for Engineers", Cambridge University Press, 2012
- 9. Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Butterworth-Heinemann, 2007

8. 2 Project	Teaching method	Observations
Introducing XGRID, XVISC and XCHAP computational modules	L SS	1:(2 hours)
of the Shipflow software package.	s or sse	1:(2 Hours)
Meshing of the computational domain by using XGRID in order to	l as cla	$2 \cdot (2 \text{ hours})$
perform the numerical simulation of the viscous flow.	vel	2.(2 110013)
Correction of mesh resolution in.	ts v in t	3:(2 hours)
Numerical calculation of the steady viscous flow around the ship	ed .	4:(2 hours)
hull by using the XVISC module of Shipflow.	e li us ot)	4.(2 110013)
Numerical simulation of the steady viscous free-surface flow	enc ets cpl	
around the ship hull without appendages and without propeller by	fere odu	5-6:(4 hours)
using the XCHAP module of Shipflow.	rei prc	
Numerical simulation of the steady viscous free-surface flow	nal are ibc	
around the ship hull equipped with an active disc propulsion sys-	tw: Tr	7-8:(4 hours)
tem in XCHAP.	sof mi	
Numerical calculation of the stationary viscous flow of the flow	he	
around ship's hull without appendages, having real stern propulsion	of bf tj	9-10:(4 hours)
modeled by the lifting line theory in XCHAP.	ise (S	
Numerical simulation of the steady viscous free-surface flow	e u nua	
around the ship hull equipped with a propeller modeled by the lifting	n th nar	11-12:(4 hours)
line theory in XCHAP.	ar n	
Numerical simulation of the steady viscous free-surface flow	sec	
around the ship hull equipped with rudder and a propeller modeled	Ba he	13:(2 hours)
by the lifting line theory in XCHAP.	t	
The completion of the project, delivery and presentation.		14:(2 hours)
Minimal reference list		

Minimal reference list

- 1. Lungu, A., (Ed) "Numerical Modeling in Engineering", Academica Press, Galati, 2001
- 2. Ferziger, J.H., Peric, M., "Computational Methods for Fluid Dynamics", Springer-Verlag, Third Edition, 2002
- 3. Flowtech International AB, "Shipflow 6.4 User's Manual", Chalmers University of Technology Press, 2018

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme.

The subject goals are as follows:

- The adequate acquaintance and use of the partial differential equations that define the free-surface potential flow around a ship hull;
- Acquaintance and thorough understanding of the PDE's that describes the boundary layer development around the ship hull;
- Skills regarding:
 - Worth motivation of the numerical solutions through the post-processing data techniques;
 - Technical solutions choices for reducing the ship resistance;
 - Hydrodynamic hull forms optimization;
- Proving a positive attitude towards the scientific achievement;
- Implication in the institutional development as well as in the scientific innovation;
- Engaging in partnerships with other similar scientific entities;

10. Assessment

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percent- age of the final grade			
	Written partial assessment	Written examination at which the student has to answer to nine theoretical questions and nine practical ones. Each one is marked by 0.5 points. A supplementary point is added only for those who partici- pate to get the final mark	50%			
10.4 Lecture	Written final assessment	Written examination at which the student has to answer to nine theoretical questions and nine practical ones. Each one is marked by 0.5 points. A supplementary point is added only for those who partici- pate to get the final mark.	50%			
10.5 Project	Final project defending	Oral examination based on the defending of the solutions chosen in the project	100%			
10.6 Minimum performance standard						
 The student should have the project submitted at the due date and defended successfully; Intermediate reports successfully taken; 						

- The intermediate exam should be marked at least with 5;

 The final examination show is conditioned not on
 The final examination show is conditioned not on The final examination show is conditioned not only by the project delivery but also by a minimal grade of 5 for its defense. The final mark will be composed by 30%, of the score of the partial defend and 40% of the score of the final defend.

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title Integrated CAD-CAM too					CAM tools in Naval Archit	tecture 1		
2.2 Lecture organize	2.2 Lecture organizer							
2.3 Project organize	2.3 Project organizer							
2.4 Year of studyII2.5 Semes		ter	Ι	2.6 Type of assessment	E+P	2.7 Type of subject	Compulsory	

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	3	where: 3.2 lecture	2	3.3 project	1	1
3.4 Total hours in the curriculum	42	where: 3.5 lecture	28	3.6 project	1-	14
Time distribution						
Study after manuals, syllabuses, bibliog	graphy and i	notes			8	8
Further documentation in libraries, on s	specialized e	electronic platforms an	d fieldw	ork	2	2
Preparing seminars / labs, assignments, essays, portfolios and essays						0
Tutorials						4
Examinations						2
Other activities: project						6
3.7 Total hours of individual study 22						
3.9 Total hours per semester 64						
3. 10 Number of credits 2+2						

4. Prerequisites (where relevant)

_ (
4.1 curriculum	• Linear Algebra, Analytical and Differential Geometry, Technical and Infographic Drawing,
related	Naval Theory. Computing techniques in shipbuilding.
4.2 competence	• Adapt of general design concepts in naval architecture.
related	• Define, analyze and use appropriate integrated design, calculation and analysis systems.

5. Conditions (where relevant)

5.1. of the lecture	Classroom, laptop, videoprojector, whiteboard
5.2. of the project	• Numeric lab, videoprojector, computers, AVEVA Marine CAD / CAM software,.

6. Specific competences acquired

C1 Preliminary design of ship's hydrodynamic forms – 4 credits	
--	--

[ransversal ompetences	Not applicable
L 2	

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	C1.1 Specification and classification of methods for defining hydrodynamic forms of the
subject	vessel.
	C1.2 Explaining and interpreting the knowledge of hydrodynamics used in the preliminary
	design of ship shapes.
7.2 Specific aims	C1.3 Full use of the conceptual and methodological apparatus under incomplete information
	to solve hydrodynamic problems specific to the ship's preliminary design.
	C1.4 Application of criteria and assessment methods for preliminary design of shapes of the
	ship.
	C1.5 Model and project argumentation of the application of qualitative and quantitative
	methods specific to the preliminary design of hydrodynamic vessel shapes.

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours
Chapter 1. Theoretical fundamentals. Curved plane. Spatial curves. Cubic	Lecture,	2 hours
splines. Surfaces. Geometric and parametric continuity.	heuristic	
Chapter 2. Bezier Curves and B-Spline. General. Definition of curbelor	conversation,	2 hours
Bezier. The Bezier algorithm. Matrix representation of Bezier curves. B-	explanation,	
Spline shape of the 3D curves. Properties of the B-Spline curves. Control	questioning,	
of B-Spline curves.	debate,	
Head 3. Bezier and B-Spline surfaces. General. Definition of Bezier	development of	2 hours
surfaces. Matrix representation of Bezier surfaces. Bicubic surfaces in B-	critical thinking	
Spline form. Other types of surfaces.		
Chapter 4. Geometrical modeling tools.		4 hours
Chapter 5. Non-relational geometric modellers.		4 hours
Chapter 6. Complex surface modeling in AVEVA Marine		14 hours
Bibliography		

1. AVEVA Marine Surface & Compartment ,Aveva Co 2011

2. AVEVA Marine HULL, Aveva Co 2011

3. BV, "Rules for Classification and Construction", Bureau Veritas, 2018

4.DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2018

5.DNV-GL, "Poseidon User's Guide", Det Norske Veritas & Germanischer Lloyd,1999-2018

6. Popescu G. "Aveva Marine - Surface & compartment"- Note de curs 2009-2010

7. Dumitru Dragomir, Modelarea formelor în arhitectura navală, Editura Fundației Universitare "Dunărea de Jos" Galați, 2006, ISBN 973-627-273-7, 149 pag., format electronic pe CD

5.DNV-GL, "Poseidon User's Guide", Det Norske Veritas & Germanischer Lloyd, 1999-2018

6. Popescu G. "Aveva Marine – HULL"- Note de curs 2009-2010

8.2 Project	Teaching method	Observations Number of hours
1. Techniques for creating surface curves using unrelated modellers.	Case studies,	2 hours
2. Techniques for modeling the ship's theoretical surfaces (hull, appendix	numerical	6 hours
superstructure).	simulations,	
3. Techniques for generating internal surfaces of the ship	explanations,	3 hours
4. Definition of ship compartments, volumetry.	development of	3 hours
	critical thinking	

Bibliography

1. AVEVA Marine Surface & Compartment ,Aveva Co 2011

2. AVEVA Marine HULL, Aveva Co 2011

3. BV, "Rules for Classification and Construction", Bureau Veritas, 2018

4.DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2018

5.DNV-GL, "Poseidon User's Guide", Det Norske Veritas & Germanischer Lloyd, 1999-2018

6. Popescu G. "Aveva Marine – Surface & compartment"- Note de curs 2009-2010

7. Dumitru Dragomir, Modelarea formelor în arhitectura navală, Editura Fundației Universitare "Dunărea de Jos"

Galați, 2006, ISBN 973-627-273-7, 149 pag., format electronic pe CD

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The discipline has a strong formative character in the profile of the practitioner and researcher of the master student in the field of naval architecture. This specialty discipline consists of two parts: Semester 1: study of general methods of 3D modeling of ship shapes, and in Semester 2: knowledge of dedicated programs of integrated naval design. -learning the special computation techniques about the 3D ship design structures ;

-learning the methods for working in/with a CAD-CAM system data base.

These competences are required by employers in the labour market, both in the country and abroad, involved in the research and design activities in naval architecture.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade			
10.4 Lecture	- Understanding and assimilating specialized knowledge of the subject	A practical exam consisting of checking the skills of the design skills of a complex block with a high degree of complexity.	100%			
10.5 Project	Application of specialized knowledge of the discipline in the design activity for static and dynamic structural analysis of the ship.	Project support: description of used procedures, analysis of modeling procedures, quality modeling verification criteria	100%			
10.6 Minimum performance standard (Each evaluation part is marked in the standard reference system 1-10.)						
- The student must complete the project. - The final exam / colloquium passed on each evaluation state with grade 5						

(AN-M) 0270.2OB03A 2022-2024

OFFICIAL GAZETTE OF ROMANIA, PART I, NO. 880 bis/13.XII.2011 Ministerial Order 5703 / 18.10.2011 ANNEX no. 3 to methodology

SUBJECT OUTLINE

1. Academic programme details

i V	
1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Optima	Optimal Shipbuilding Technologies					
2.2 Lecture organizer	cture organizer							
2.3 Laboratory organize	2.3 Laboratory organizer							
2.4 Year of study I	I 2	2.5 Semest	ter	Ι	2.6 Type of assessment	Ε	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

4

3.1 Total hours per week	4	where: 3.2 lecture	2	3.3 laboratory	2
3.4 Total hours in the curriculum	56	where: 3.5 lecture	28	3.6 laboratory	28
Time distribution					hours
Study after manuals, syllabuses, bibliog	raphy and n	otes			10
Further documentation in libraries, on sp	pecialized e	lectronic platforms and	l fieldwo	rk	4
Preparing laboratory, assignments, essays, portfolios and essays					
Tutorials					
Examinations					
Other activities					
3.7 Total hours of individual study 22					
3 9 Total hours per semester	78				

3. 10 Number of credits

4. Prior learning / Prerequisites (where relevant)

4.1 curriculum-	– None
related	
4.2 competence-	– None
related	

5. Conditions (where relevant)

5.1. of the lecture	 Classroom or Microsoft Teams online Platform, laptop, projector
5.2. of the labora-	 Laptop, Microsoft Teams online Platform or projector
tory	

6. Specific competences acquired

	C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding -
nal ces	4 credits
sion	
fest	
^r om	
F	

ansversal npetences	Not applicable
Tra	

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General	C5.1 In-depth knowledge, analysis and synthesis of naval technologies.
aim of the	C5.2 Use of information sources and specialized knowledge for the analysis, evaluation and selection of tech-
subject	nological solutions imposed in new situations.
7.2 Specific	C5.3 Integrated use of the information, conceptual and methodological apparatus in the development of
aims	innovative technologies.
	C5.4 Applying algorithms to assess the performance of new technologies to improve decision making.
	C5.5 Innovative use of specific technologies for the purpose of project development.

8. Contents

8. 1 Lecture	Teaching method	Observations
1.The shipbuilding process		C1
 Shipbuilding Terms and Definitions 	PowerPoint slides	(2 hours)
 Status of the Shipbuilding Industry 		(2 110013)
2.Shipbuilding management theory		
 Shipbuilding Economic Theory 	PowerPoint slides	C2
 Group Technology 	rowerronnt sindes	(2 hours)
 Work Breakdown Structures 		
3.Product-oriented work breakdown structure		C2
 Planning for Production 	PowerPoint slides	(2 hours)
 Zone Construction Method 	rowerronnt sindes	(2 nours)
 Pipe Piece Family Manufacture 		
4.Metal manufacturing and construction processes		
 Hull Materials 	PowerPoint slides	C4
 Metal Processes 		(2 hours)
 Outfit Processes 		
5.Welding		C5-C7
 Welding and cutting processes used in shipbuilding 	PowerPoint slides	(6 hours)
 Welding practice and testing welds 		
6.Fracture Control		
 Jack-Knifed Failure of Liberty Ships 	PowerPoint slides	C8
- Fracture Mechanics		(2 hours)
– Fatigue Strength Design		
7. Assembly of ship structure		
 Plate and section preparation and machining 		
- Frame bending		C9-C10
- Block assembly	PowerPoint slides	(4 hours)
– Outfit modules		
- Unit erection		
- Joining ship sections affoat		
8.Snipyard layout		C11
- Historical Perspective	PowerPoint slides	(2 hours)
- Snipyard Facilities and Sitting		(2 nours)
Process Lanes Denning scheduling and production control	DowerDoint alidea	C12
9. ramming, scheduling, and production control	FowerPoint sindes	C12

_	Planning Overview		(2 hours)
-	Planning and Scheduling		
-	Production Control		
_	Material Control		
10.Accuracy	y control		
-	Planning		C12
-	Executing	PowerPoint slides	(2 hours)
-	Evaluating		(2 hours)
-	Applications		
11.Ship con	version, overhaul, and repair		
-	Selecting an Approach		
-	Repair and Overhaul		C14
-	Conversion and Modernization	PowerPoint slides	(2 hours)
-	Deactivation		(2 110013)
-	Scrapping		
_	Recent Innovations in Ship Repair		
References			
1.	Dokkum, K.v., "Ship Knowledge, a modern encycloped	dia". Dokmar, First Edit	ton, 2003

- 2. Eyres, D.J., Bruce, G.J., "Ship Construction" Butterworth-Heinemann, Seventh edition, 2012
- 3. Okumoto, Y., Takeda, Y., Mano, M., Okada, T., "Design of Ship Hull Structures A Practical Guide for Engineers", Springer-Verlag, 2009
- 4. Storch, R.L., Hammon, C.P., Bunch, H.M. & Moore, R.C., "Ship production", Cornell Maritime press, Inc, Second Edition, 1995
- 5. Taylor, D.A., "Merchant Ship Construction", The Institute of Marine Engineers, Third Edition, 1992

8. 2 Laboratory	Teaching method	Observations
1.Power sources used for welding, operating mode, technical		L1:(2 hours)
performance	ase ns)	
2.Semiautomatic and automatic welding; machines and installa-	on c ptio	L2:(2 hours)
tions used, mode of operation; technical performance.	is c	
3. Welding in protective and active gas environments. MIG	ll <i>ɛ</i>	
equipment; MAG; CARGON; operating mode, technical perfor-	s c	L3:(2 hours)
mance	as ide	
4.Technological tools and equipment used to assemble prefabri-	ist t sl	I_{4} (2 hours)
cated elements and the ship's body	e I.	
5.Assembly and welding technology of flat sections, automatic	sucpc	I_{5}
technological lines for assembling flat sections.	ĉere ver	L3.(2 Hours)
6.Assembly and welding technologies for curved, volume and	Jov 1	
block sections.	or J	Lo:(2 nours)
7.Technologies for the assembly and welding of the ship's body	uin Adv	
on a mounting bay and in a dry dock.	mi o au	L7:(2 nours)
8.Cutting of laminates, used cutting machines and technologies,	he dec	
technical performance and operation.	of t (vi	L8:(2 nours)
9. Sheet metal forming, machining and cutting technologies.	ed	L9:(2 hours)
10.Profile processing; machines used for cutting and welding.	ent	
Automatic processing lines for profiles.	the	L10:(2 hours)
11.Nondestructive evaluation : Liquid Penetrant	on s p	L11:(2 hours)
12.Nondestructive evaluation : Ultrasound	die	L12:(2 hours)
13.Nondestructive evaluation : Magnetic Particle	Bas	L13:(2 hours)
14. Nondestructive evaluation : Eddy Current		L14:(2 hours)
Minimal reference list		· · · · · · · · · · · · · · · · · · ·
1 Babicz I "Wärtsilä Encyclopedia of Shin Technology" V	Wärtsilä Corporation Se	cond Edition Helsinki
2015	, unanu corporation, per	

- 2. Mandal, N.R., "Ship Construction and Welding", Springer Nature Singapore Pte Ltd., 2017
- 3. Schull, P.J., "Nondestructive Evaluation Theory, Techniques, and Applications", Marcel Dekker, Inc., New York, 2001

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The subject goals are as follows:

- Knowledge of modern methods of naval technological design, development of skills necessary to solve such problems, training of competencies in the coordination and control of ship manufacturing and assembly activities;
- Acquiring the knowledge necessary to develop the manufacturing, assembly and welding technologies, the measuring and control instruments used;
- Assimilation of the technological design knowledge necessary for the correct selection of the naval design solutions.
- Strengthen the skills related to the correct assessment of the technical solutions adopted and their optimal implementation in practice in technological terms;
- Involvement in the promotion of modern technical and technological solutions, their conception and practical application.
- Understand the importance of the link of the individual training related to the whole process of elaborating a technological project. Optimal and creative optimization of its own potential in scientific activities;
- Involvement in institutional development and promotion of scientific innovations;
- Engage in partnerships with other similar scientific entities.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percent- age of the final			
			grade			
10.4 Lecture	Final written evaluation	Exam on written descriptive examination, to which the student has the answer to nine theoretical questions and applica- tions. Each question is marked with 1 point. On the total points obtained, add the point ex officio to give the final grade of the exam.	70%			
10.5 Laboratory	Apply the fundamental knowledge of the discipline	Presentation of the laboratory themes	30%			
10.6 Minimum performance standard						
 The student must have all the laboratory subjects taught. 						
– The final exam passed with at least grade 5.						

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title	2.1 Subject title Offshore Units and Systems							
2.2 Lecture organize	er							
2.3 Project organizer								
2.4 Year of study II 2.5 Semes			ter	Ι	2.6 Type of assessment	E+P	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	3	where: 3.2 lecture	2	3.3 project	1			
3.4 Total hours in the curriculum	42	where: 3.5 lecture	28	3.6 project	14			
Time distribution								
Study after manuals, syllabuses, bibliography and notes								
Further documentation in libraries, on specialized electronic platforms and fieldwork								
Preparing seminars / labs, assignments, essays, portfolios and essays								
Tutorials								
Examinations								
Other activities. Project								
3.7 Total hours of individual study 34								
3.9 Total hours per semester	76							
3. 10 Number of credits	3+3							

4. Prior learning / Prerequisites (where relevant)

4.1 curriculum-	Strength Materials, Mechanics, Fluid Mechanics, Numerical Methods, Programming
related	
4.2 competence-	Adapt general design concepts in naval architecture.
related	

5. Conditions (where relevant)

5.1. of the lecture	Classroom, laptop, videoprojector, whiteboard
5.2. of the project	Computer network room, project guide

6. Specific competences acquired

-	
Professional competences	C6 In-depth knowledge and development of materials and technologies used in offshore engineering – 6 credits
Transversal competences	Not applicable

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore
subject	engineering and specific technologies.
	C6.2 Analysis and evaluation of new offshore unit and offshore projects in order to identify
	optimal technological solutions.
7.2 Specific aims	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8. 1 Lecture	Teaching method	Observations
Chapter 1- Types of offshore units, characteristics, future development	Lecture,	C1 – C4
directions, applicable rules. Technological installations of offshore units	heuristic	(8 hours)
(drilling, refining, liquefaction).	conversation,	
Chapter 2 - Types of loads to which offshore units are subjected,	explanation,	C5 - C6
performance, technical criteria.	questioning,	(4 hours)
Chapter 3 – Determination of hydrodynamic forces acting on offshore	debate,	C7 – C8
units.	development of	(4 hours)
Chapter 4 - Determination of aerodynamic forces acting on offshore units.	critical thinking	C9 - C10
		(4 hours)
Chapter 5 – Determination of forces in mooring lines of offshore units.		C11 – C12
		(4 hours)
Chapter 6 – Analysis of the equations of motion for an offshore unit		C13 – C14
depending on the type of mooring system.		(4 hours)

Bibliography

- 1. ABS, Offshore Systems Rules, Houston, 2023
- Aage, C., Bernitsas, M. M., Choi, H.S., Crudu, L., Hirata, K., Incecik, A., Kinoshita, T., Moxnes S., Murray, J.J., *Report of the ITTC Specialist Committee on Deep Water Mooring*, 22nd International Towing Tank Conference (ITTC), pp. 375-398, 5-11 September, Seoul, Korea and Shanghai, China, 1999 and The Society of Naval Architects of Korea and The Chinese Society of Naval Architects and Marine Engineers, 1999.9
- 3. Barltrop N. D. P., Adams A.J., Dynamics of Fixed Marine Structures, Third edition, MTD Limited, Butterworth Heinemann, London, 1991.
- 4. Ben C. Gerwick Jr., Construction of marine and offshore structures, Second Edition, CRC Press, New York Washington D.C., 2000
- 5. Chakrabarti, S.K., Hydrodynamics of Offshore Structures, Computational Mechanics Publications, Southampton Boston, Springer-Verlag Berlin, 1987
- 6. Clauss G., Lehmann E., Őstergaard C., Offshore structures, Springer-Verlag London, Limited, 1992.
- 7. Crudu, L., Aplicații teoretice și experimentale în industria offshore, Editura Fundației Universitare "Dunărea de Jos" Galați, 2015

3. Faltinsen, O.M., Hydrodynamic Loads on Marine Structures, Theoretical and Applied Mechanics, IUTAM,							
Elsevier Science Publishers B.V., 1985							
Hooft, J.P., Advanced Dynamics of Marine Structures, John Wiley & Sons, 1982							
. Kinoshita, T., Hirata, K., Colbourne, B., Pinkster, J.A., Jianmin, Y., Ha, M.K., Thiagarajan, K., Crudu, L., <i>Report</i>							
of the ITTC Specialist Committee on Stationary Floating Systems, 23rd International Towing Tank Conference							
(ITTC), Volume II, pp. 545-571, 8-14 September, Venice, Italy, 2002 and Marine Technology, Holland							
11. Kokkinowrachos, K., Handbuch der Werften, Offshore - Bauwerke, H	dromechanik, Schiffah	rts-Verlag, HANSA,					
C. Schroedter & Co., Hamburg 11, 1980	1 '1 II ' ' D	2007					
12. Paik J.K., Thayamballi A.K., "Ship Shaped Offshore Installations", Cal	nbridge University Pres	ss, 2007					
13. Paulling, J.R., Hydrodynamic Synthesis of Marine Structures, The	pretical and Applied I	Mechanics, IUTAM,					
Elsevier Science Publishers B.V., 1985		D : 1 11 C					
14. Sarpkaya, T., Isaacson, M., Mechanics of Waves Forces on Offshore St	ructures, van Nostrand	Reinhold Company,					
New York, 1981	1 04/100 T 1	1002					
15. Visser W. The structural design of offshore jackets, MTD Limited, Put	blication 94/100, Londo	n, 1993.					
8.2 Project	Teaching method	Observations					
1. The study and adoption of the technological and constructive solution	Case studies,	PI					
for the offshore unit imposed by the theme.	numerical	(2 hours)					
2. Establishing the main dimensions of the offshore unit. Setting up the	simulations,	P2					
offshore unit, choosing the mooring systems.	explanations,	(2 hours)					
3. Determination of the hydrodynamic and aerodynamic forces acting on	development of	P3-P4					
the offshore unit	critical thinking	(4 hours)					
4. Structural design of the offshore unit in accordance with classification		P5-P7					
society regulations		(6 hours)					
Bibliography							
1. ABS, Offshore Systems Rules, Houston, 2023							
2. Barltrop N. D. P., Adams A.J., Dynamics ot Fixed Marine Structures, T	hird edition, MTD Lim	ited, Butterworth –					
Heinemann, London, 1991.							
3. Bendat, J.S., Piersol, A.G., Engineering Applications of Correlation and Spectral Analysis, Wiley – Interscience							
Publication, New York – Chichester – Brisbane – Toronto, 1980							
4. Ben C. Gerwick Jr., Construction of marine and offshore structures, Second Edition, CRC Press, New York							
Washington D.C., 2000							
Bhattacharyya, R., Dynamics of Marine Vehicles, John Wiley & Sons Publishing House, New York, 1982							
6. Clauss G., Lehmann E., Östergaard C., Offshore structures, Springer-V	erlag London, Limited,	1992.					
7. Crudu, L., Aplicații teoretice și experimentale în industria offshore, Edi	tura Fundației Universi	tare "Dunărea de					
Jos" – Galați, 2015							
8. Jourenee, J.M.J., Massie, W.W., Offshore Hydromechanics, First Edition	on, Delft University of T	Technology, January					
9. Moxnes, S., Ultra Small Scale Model Testing of a FPSO Ship, Proceed	ngs of the "Workshop of	on Deep Water					
Mooring and Related Topics in Offshore Engineering", ITTC Specialist	Committee Meeting, C	balați, Romania,					
October 1998							
10. Nakajima, S., Motora, S., Fujimo, M., On the Dynamic Analysis of Mu	lti-Component Mooring	g Lines, 14th OTC,					
paper no. 4309, Houston, Texas, May 1982							
11. Pinkster, J.A., Remery, G.F.M., The Role of Model Tests in the Desi	gn of Single Point Mo	oring Terminals, 7th					
OTC, paper no.2212, Houston, Texas, 1975							
12. Paik J.K., Thayamballi A.K., "Ship Shaped Offshore Installations", Car	nbridge University Pres	ss, 2007					
13. Pinkster, J.A., Low Frequency Second Order Wave Exciting Forces	on Floating Structures,	Publication No.650,					
NSMB, 1980							
14. Takagi, M., Arai, S.I., Takezava, S., Tanaka, K., Takarada, N., A Comparison of Methods for Calculating the							

Motion of a Semisubmersible, Ocean Engineering, vol. 12, no. 1, pp. 45-97, 1985 15. van Oortmerssen, G., The Motions of a Moored Ship in Waves, NSMB, Publication No.510, Wageningen, 1976 16. Visser W. The structural design of offshore jackets, MTD Limited, Publication 94/100, London, 1993.

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

Through its content, the discipline aims to provide the naval engineer with in-depth knowledge on understanding the specific issues that arise in the design, construction and operation of offshore structures. It is essential to understand and make use of the conceivable differences in ship design with regard to the existence of concepts of operational and survival limit, as well as the impact on the environment and staff. It is also important to understand the need to adapt to the specific conditions of the location. The main objective is to create intellectual, analytical, synthesis and comparison capabilities so that they can make the right decisions in a new issue that would arise in ocean engineering.

			10.3			
Activity	10.1 Assessment criteria	10.2 Assessment methods	Percentage of			
			the final grade			
	-Understanding and	The final exam	75%			
	assimilating specialized	Presence at the course, participation in	25%			
10.4 Locture	knowledge of the subject	debates, stimulation of critical thinking.				
10.4 Lecture	-Developing the necessary					
	rationale for designing and					
	research for marine structures					
	Application of specialized	The evaluation of the project, which	100%			
	knowledge of the discipline in	quantifies the rhythmic involvement and				
10.5 Project	the design of marine structures	the correctness of the obtained numerical				
		results, as well as the final support of the				
		project content.				
10.6 Minimum performa	10.6 Minimum performance standard					
- The student must complete the project.						
- The Final Examination / Final Verification will be promoted for each stage with grade 5.						

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Researc	Research & Design Internship 3					
2.2 Lecture organize	er							
2.3 Internship organizer								
2.4 Year of study II 2.5 Semes		ter	Ι	2.6 Type of assessment	V	2.7 Type of subject	Compulsory	

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	14	where: 3.2 lecture	-	3.3 internship	14
3.4 Total hours in the curriculum	196	where: 3.5 lecture	-	3.6 internship	196
Time distribution					hours
Study after manuals, syllabuses, bibli	ography and	notes			14
Further documentation in libraries, or	specialized	electronic platforms an	d fieldw	ork	14
Preparing assignments, portfolios					14
Tutorials					10
Examinations					4
Other activities:					-
3.7 Total hours of individual study	56				
3.9 Total hours per semester	252				
3. 10 Number of credits	10				

4. Prerequisites (where relevant)

4.1 curriculum	• Disciplines from the bachelor's degree in Naval Architecture / Mechanical Engineering.
related	• Full assisted disciplines from the Naval Architecture Master.
4.2 competence related	• Define, analyze, and use appropriate research and design systems.

5. Conditions (where relevant)

5.1. of the lecture	•	-
5.2. of the	٠	Experimental and numerical laboratories within the Research Center "Naval
internship		Architecture", experimental equipment, computers, software, Internet access,
		bibliographic sources.
	٠	Research and design laboratories at partner internship companies.

6. Spe	cific competences acquired
Professional competences	C1 Preliminary design of ship's hydrodynamic forms – 2 credits C2 Hydrodynamic optimization of the hull forms – 2 credits C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding. – 1 credit C6 In-depth knowledge and development of materials and technologies used in offshore engineering – 2 credits
Transversal competences	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture – 1 credit CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval architecture – 1 credit CT3 Assessment of the need for professional training, in the context of the evolution of the field – 1 credit

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	C1.1 Specification and classification of methods for defining hydrodynamic forms of the
subject	vessel.
· ·	C1.2 Explaining and interpreting the knowledge of hydrodynamics used in the preliminary
	design of ship shapes.
	C2.1 Detailing the methods, techniques and procedures for describing the concepts related to
	C2.2 Evaluation of construction the applied hydrodynamics browledge to the particular problem.
	of a ship hull regardless of its geometry
	C5.1 In-denth knowledge analysis and synthesis of naval technologies
	C5.2 Use of information sources and specialized knowledge for the analysis evaluation and
	selection of technological solutions imposed in new situations
	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore
	engineering and specific technologies.
	C6.2 Analysis and evaluation of new offshore unit and offshore projects in order to identify
	optimal technological solutions.
	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture
	CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval
	architecture
	CT3 Assessment of the need for professional training, in the context of the evolution of the field
7.2 Specific aims	C1.3 Full use of the conceptual and methodological apparatus under incomplete information
	to solve hydrodynamic problems specific to the ship's preliminary design.
	C1.4 Application of criteria and assessment methods for preliminary design of shapes of the
	ship.
	C1.5 Model and project argumentation of the application of qualitative and quantitative
	methods specific to the preliminary design of hydrodynamic vessel shapes.
	Let budrodunamics problems related to the optimal design of the bull forms
	C2.4 Applying criterie and evaluation methods with which the hull forms can be improved
	C2.5 Argumentation by models and projects of the most appropriate methods for defining the
	ontimal forms from a hydrodynamic point of view
	C5.3 Integrated use of the information conceptual and methodological apparatus in the
	development of innovative technologies.
	C5.4 Applying algorithms to assess the performance of new technologies to improve decision
	making.
	C5.5 Innovative use of specific technologies for the purpose of project development.
	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours					
8.2 Internship	Teaching method	Observations Number of hours					
1. Theoretical modeling of the research topic							
2. Development of the theoretical model. Theoretical results	Research and	196 hours					
3. Numerical modeling of the research topic theme.	design						
4. Development the numerical model. Numerical results							
5. Technological modeling of the research topic theme.							
6. Development the technological model. Technological results							
7. Translating results from model to nature							
8. Experimental modeling of the research topic theme							
9. Development of the experimental model. Results by experimental model							
10. Translating experimental results from model to nature							
11. Research-design internship report							
Bibliography							
1. Amoraritei, M., "Complements of Marine Propellers Hydrodynamics in N	1. Amoraritei, M., "Complements of Marine Propellers Hydrodynamics in Non-uniform Flow", Galati Univ. Press, 2008						
2. Andersson, B., Andersson, R., Hakansson, L., Mortensen, M., Sudiyo, R., van Wachem, B., "Computational Fluid							
Dynamics for Engineers", Cambridge University Press, 2012							
3. Betram, V., "Practical Ship Hydrodynamics", (Ed.II) Butterworth Heinemann, Oxford, 2012							
4. Babicz, J., "Wärtsilä Encyclopedia of Ship Technology", Wärtsilä Corp	4. Babicz, J., "Wärtsilä Encyclopedia of Ship Technology", Wärtsilä Corporation, Second Edition, Helsinki, 2015						
5. Breslin, J.,P., "Hydrodynamics of Ship Propeller", Cambridge University	ity Press, 2003						
6. BV, "Rules for Classification and Construction", Bureau Veritas, 2023							
7. Carlton, J., S., "Marine Propellers and Propulsion", Elsevier, 2006	7. Carlton, J., S., "Marine Propellers and Propulsion", Elsevier, 2006						
8 Domnisory I "Structural Analysis and Hydroelasticity of Shins" The Dunărea de Jos" University Foundation							

- 8. Domnisoru, L., "Structural Analysis and Hydroelasticity of Ships", The "Dunărea de Jos" University Foundation Publishing House, Galati, 2006
- 9. Domnisoru, L., Lungu, A., Dragomir, D., Ioan, A., "Complements of Structural Analysis and Ship Hydrodynamics", Galati University Press, 2008
- 10. DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2023
- 11. Dragomir, D., Lungu, A., Domnisoru, L., "Naval Architecture Design Complements", "Didactic and Pedagogic" Publising House, Bucharest, 2007
- 12. Eyres, D.J., "Ship Construction", Elsevier Butterworth-Heinemann, New York, 2007
- 13. Ferziger, J.H., Peric, M., "Computational Methods for Fluid Dynamics", Springer-Verlag, Third Edition, 2002
- 14. Ghose, J., P., Gokarn, R., P., "Basic Ship Propulsion", New Delhi, 2004
- 15. Hadar, A., "Multilayer Composite Materials", Academy and AGIR Publishing House, Bucharest, 2002
- 16. Hadar, A., Marin, C., Petre, C., Voicu, A., "Numerical Methods in Engineering", Politehnica Press, Bucharest, 2005
- 17. Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Butterworth-Heinemann, 2007
- 18. ISO 6954:2000, "Mechanical vibration Guidelines for the measurement, reporting and evaluation of vibration with regard to habitability on passenger and merchant ships", https://www.iso.org/obp/ui/#iso:std:iso:6954:ed-2:v1:en
- 19. ISO 20283-5:2016, "Mechanical vibration Measurement of vibration on ships Part 5: Guidelines for measurement, evaluation and reporting of vibration with regard to habitability on passenger and merchant ships", https://www.iso.org/ obp/ui/#iso:std:iso:20283:-5:ed-1:v1:en
- 20. Lewandowski, E.M., "The Dynamics of Marine Craft", World Scientific, New Jersey, 2004
- 21. LR, "Ship Vibration and Noise. Guidance Notes", Lloyd's Register, London, 2023
- 22. Lungu, A., (Ed) "Numerical Modeling in Engineering", Academica Press, Galati, 2001
- 23. Mandal, N.R., "Ship Construction and Welding", Springer Nature Singapore Pte Ltd., 2017
- 24. Mansour, A., Liu, D., "Strength of Ships and Ocean Structures, The Principles of Naval Architecture Series, SNAME, New Jersey, 2008
- 25. Mocanu, C., "Strength of Materials", "Dunărea de Jos" University Foundation Publishing House, Galati, 2005
- 26. Obreja, D., "Ship theory. Concepts and Methods of Navigation Performance Analysis", "Didactic and Pedagogic" Publishing House, Bucharest, 2005

- 27. Okumoto, Y., Takeda, Y., Mano, M., Okada, T., "Design of Ship Hull Structures A Practical Guide for Engineers", Springer-Verlag, 2009
- 28. Paik, J.K., Thayamballi, A.K., "Ship Shaped Offshore Installations", Cambridge University Press, 2007
- 29. Rao, S.S., "The Finite Element Method in Engineering", Elsevier Science & Technology Books, New York, 2004
- 30. Rawson, K.J., Tupper E.C., "Basic Ship Theory", (2 vol) Butterworth Heinemann, Oxford, 2001
- 31. Rodolfo, A., White, J., "Dynamic Scheduling with Microsoft Project", International Institute for Learning, 2011
- 32. Serban, D., Gavan, E., "Shipbuilding and Welding Technology", Evrika Publishing House, Brăila, 2001
- 33. Spyridon, E.H., Chunhua, Ge, "Review & Introduction to Hydroelasticity of Ships", Lloyd's Register, London , 2005
- 34. Stoicescu, L., "Strength of Materials", Evrika Publishing House, Braila, 2 vol., 2004
- 35. Storch, R.L., Hammon, C.P., Bunch, H.M. & Moore, R.C., "Ship production", Cornell Maritime Press, 2000
- 36. Schull, P.J., "Nondestructive Evaluation Theory, Techniques, and Applications", Marcel Dekker, New York, 2001
- 37. Versteeg, H., Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Prentice Hall, 2007
- 38. Vlase, S., "Composite Materials. Numerical Methods, "Transilvania" University Publishing House, Braşov, 2007
- 39. Vorus, W.S., "Vibration", The Principles of Naval Architectures Series, SNAME, New Jersey, 2010
- 40. Zienkiewicz, O.C., Taylor, R.L.,"The Finite Element Method" (3 Vol.), Elsevier Butterworth-Heinemann, Oxford, 2000

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The training includes the basic elements for integrating the graduate in the activities of the shipbuilding research and design companies, as well as for Bologna III PhD studies.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade		
10.4 Lecture					
10.5 Internship	Applying specialized knowledge in research and design activities	 Evaluating the weekly research-design internship that quantifies the rhythmic involvement and accuracy of the results. Evaluation of the research-design internship report. 	70%		
10.6 Minimum performance standard (Each evaluation part is marked in the standard reference system 1-10.)					
- The student should pas - The student should pas	s the current activities in the resea s with the grade 5 the examination	rch and design internship.	1 100		

SUBJECT OUTLINE

1. Academic programme details

<u> </u>	
1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Integra	Integrated CAD-CAM tools in Naval Architecture 2					
2.2 Lecture organize	er							
2.3 Project organize	r							
2.4 Year of study	Π	2.5 Semes	ter	Π	2.6 Type of assessment	E+P	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	4	where: 3.2 lecture	2	3.3 project	2
3.4 Total hours in the curriculum	56	where: 3.5 lecture	28	3.6 project	28
Time distribution					hours
Study after manuals, syllabuses, bibliog	graphy and i	notes			8
Further documentation in libraries, on a	specialized	electronic platforms an	d fieldw	ork	2
Preparing seminars / labs, assignments, essays, portfolios and essays			0		
Tutorials				2	
Examinations					2
Other activities: project					6
3.7 Total hours of individual study	20				
3.9 Total hours per semester	76				
3. 10 Number of credits	2+2				

4. Prerequisites (where relevant)

4.1 curriculum	• Ship Construction, Technical Design and Infographic, Ship Theory, Computing technics in
related	ship construction.
4.2 competence	• Adapt of general design concepts in naval architecture.
related	• Define, analyze and use appropriate integrated design, calculation and analysis systems.

5. Conditions (where relevant)

5.1. of the lecture	Classroom, laptop, videoprojector, whiteboard
5.2. of the project	• Numeric lab, videoprojector, computers, AVEVA Marine CAD / CAM software,.

6. Specific competences acquired

C4 Advanced design of ship structures – 4 credits	

insversal ipetences	Not applicable
Tra com	

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of the	C4.1 Defining and specifying methods, techniques and procedures for describing concepts			
subject	specific to the advanced design of ship structures.			
	C4.2 Classification and use of methods, techniques and procedures for analyzing concepts			
	specific to advanced design of new ship structures.			
7.2 Specific aims	C4.3 Apply the appropriate methods and techniques for the advanced design of ship			
	structures under incomplete information to solve new theoretical problems.			
	C4.4 Evaluate and interpret data specific to the advanced design of ship structures to			
	substantiate constructive decisions.			
	C4.5 Making models and designing projects that use innovative qualitative and quantitative			
	methods specific to the advanced ship structures design. Developing projects using concepts			
	specific to the advanced design of ship structures.			

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours
1. Complex blocks modeling.	Lecture,	2 hours
2 Coordinate systems	heuristic	2 hours
3 Locate blocks sections and panels.	conversation,	2 hours
4 Creating an atypical views. Define grid.	explanation,	2 hours
5 Generate comprehensive panel. Define Limits.	questioning,	2 hours
6 Seams modeling. Plates modeling.	debate, development of	2 hours
7 Stiffners modelling .		2 hours
8 Edit and modify DB schemes.	critical thinking	2 hours
9 Cuttings modeling. Notch modeling		2 hours
10 Complex brackets modeling .		2 hours
11 Complex flanges modeling .		2 hours
12 Handling panels		2 hours
13 Assembly drawings generation		2 hours
14. Construction drawings generation		2 hours
Bibliography		

1. AVEVA Marine Planar HULL ,Aveva Co 2011

2. AVEVA Marine HULL, Aveva Co 2011

3. BV, "Rules for Classification and Construction", Bureau Veritas, 2018

4.DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2018

5.DNV-GL, "Poseidon User's Guide", Det Norske Veritas & Germanischer Lloyd,1999-2018 6. Popescu G. "Aveva Marine – HULL"- Note de curs 2009-2010

8.2 Project	Teaching method	Observations Number of hours
Step1. Identify the technical specifications of the design theme	Case studies,	4 hours
(block, sections and panels). Grid define. Comprehensive pannel	numerical	
generation. Limits.	simulations,	
Step 2. Seams modeling. Plates modeling. Stiffners modelling (for complex	explanations,	4 hours
3D models)	development of	
Step 3 DB schemes editing. Cuttings modeling. Notch modeling	critical thinking	4 hours
Step 4 Complex brackets modeling. Complex flanges modeling .	U	4 hours

Step 5. Curved panels modelling.		4 hours
Step 6. Assembly drawings generation		4 hours
Step 7. Construction drawings generation. Production Interface.		4 hours
Bibliography		
1. AVEVA Marine Planar HULL ,Aveva Co 2011		
2. AVEVA Marine HULL, Aveva Co 2011		
3. BV, "Rules for Classification and Construction", Bureau Veritas, 2018		
4.DNV-GL., "Rules for Classification and Construction", Det Norske Veritas & Germanischer Lloyd, 2018		
5.DNV-GL, "Poseidon User's Guide", Det Norske Veritas & Germanischer I	Lloyd,1999-2018	
6. Popescu G. "Aveva Marine – HULL"- Note de curs 2009-2010		

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The discipline has a strong formative character in the profile of the practitioner and researcher of the master student in the field of naval architecture. This specialty discipline consists of two parts: Semester 1: study of general methods of 3D modeling of ship shapes, and in Semester 2: knowledge of dedicated programs of integrated naval design.

-learning the special computation techniques about the 3D ship design structures ;

-learning the methods for working in/with a CAD-CAM system data base.

These competences are required by employers in the labour market, both in the country and abroad, involved in the research and design activities in naval architecture.

			10.3
Activity	10.1 Assessment criteria	10.2 Assessment methods	Percentage of
			the final grade
	- Understanding and	A practical exam consisting of checking	100%
10.4 Lesture	assimilating specialized	the skills of the design skills of a complex	
10.4 Lecture	knowledge of the subject	block with a high degree of complexity.	
	Application of specialized	Applying the fundamental knowledge and	100%
	knowledge of the discipline in	information of the discipline through its	
10.5 Project	the design activity for static	own effort of conception, concretized in a	
-	and dynamic structural	design of complex structural sections.	
	analysis of the ship.		
10.6 Minimum performa	nce standard (Each evaluation pa	art is marked in the standard reference system	1-10.)
- The student must comp	blete the project.		
- The final exam / colloo	uium passed on each evaluation s	tate with grade 5.	

SUBJECT OUTLINE

1. Date despre program

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title	Commi	issioning		
2.2 Lecture organizer				
2.3 Laboratory organizer				
2.4 Year of study II	2.5 Semes	ster II 2.6 Type of assessment	E 2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	4	where: 3.2 lecture	2	3.3 laboratory	2
3.4 Total hours in the curriculum	56	where: 3.5 lecture	28	3.6 laboratory	28
Time distribution					hours
Study after manuals, syllabuses, bibliog	raphy and	notes			10
Further documentation in libraries, on s	pecialized	electronic platforms an	d fieldw	ork	4
Preparing laboratory, assignments, essays, portfolios and essays			7		
Tutorials			4		
Examinations			2		
Other activities					0
3.7 Total hours of individual study	27				
3.9 Total hours per semester	83				
3. 10 Number of credits	5				

4. Prior learning / Prerequisites (where relevant)

4.1 curriculum-	• None
related	
4.2 competence- related	• None

5. Conditions (where relevant)

5.1. of the lecture	• The right of sustaining the final examination is conditioned by participating to the Laboratories.
5.2. of the laboratory	• The student attendance of all scheduled Laboratories is compulsory.

6. Specific competences acquired

-	
Professional competences	C5 In-depth knowledge and development of materials and technologies used in the field of shipbuilding – 3 credits C6 In-depth knowledge and development of materials and technologies used in offshore engineering – 2 credits
Transversal competences	Not applicable

7. Learning outcomes (as resulting from the grid of specific competences acquired)

	(
7.1 General aim of the	C5.1 In-depth knowledge, analysis and synthesis of naval technologies.
subject	C5.2 Use of information sources and specialized knowledge for the analysis, evaluation and
	selection of technological solutions imposed in new situations.
	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore
	engineering and specific technologies.
	C6.2 Analysis and evaluation of new offshore unit and offshore projects in order to identify
	optimal technological solutions.
7.2 Specific aims	C5.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C5.4 Applying algorithms to assess the performance of new technologies to improve decision
	making.
	C5.5 Innovative use of specific technologies for the purpose of project development.
	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8. 1 Lecture	Teaching method	Observations
1.General considerations	PowerPoint slides	2 hours
2.Preparing the commissioning program	displayed on the	4 hours
3.Planning and coordination of the commissioning program	intelligent board	4 hours
4.Starting-up tehcnoligy of the ship sytems		4 hours
5.Organizing the commissioning program		6 hours
6.Specific materials requetsed by the commissioning program		4 hours
7. Harbour tests and sea trials requested by the commissioning		4 hours
program		

References

1. Ceangă, V., Lungu, A., Paraschivescu, C., Ploeșteanu C., 2000, "Deck Machinary" Academica Publishing House, ISBN 973-98858-8-8

- 2. Lungu, A., 1999, "Hydropneumatic Naval Machinery and Drives", Tehnical Publishing House, Bucharest, ISBN 973-31-1330-1
- 3. Ceangă, V., Paraschivescu, C., Lungu, A., Bidoae, R., 1993, "Pipes Systems", Galați University
- 4. Ceangă, V., Mocanu, C.I., Teodorescu, 2003, "Dynamics of Propulsion Systems", Didactic and Pedagogic Publishing House, ISBN 973-30-2310-8, Bucharest

8. 2 Laboratory	Teaching method	Observations
1.Preparing the main engine for commissioning	Participation in the	8 hours
2.Preparing the transfer fuel system for commissiong	commissioning	4 hours
3.Starting-up the transfer fuel system	activities taking place	4 hours
4.Starting-up the M.E. cooling water system	in Damen Shipyards	4 hours
5.Harbour tests of the life saving system	Galati	4 hours
6.Harbour tests of the towing winch		4 hours

References

- 1. Ceangă, V., Lungu, A., Paraschivescu, C., Ploeșteanu C., 2000, "Deck Machinary" Academica Publishing House, ISBN 973-98858-8-8
- Lungu, A., 1999, "Hydropneumatic Naval Machinery and Drives", Tehnical Publishing House, Bucharest, ISBN 973-31-1330-1
- 3. Ceangă, V., Paraschivescu, C., Lungu, A., Bidoae, R., 1993, "Pipes Systems", Galați University
- 4. Ceangă, V., Mocanu, C.I., Teodorescu, 2003, "Dynamics of Propulsion Systems", Didactic and Pedagogic Publishing House, ISBN 973-30-2310-8, Bucharest

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

- The content of the discipline leads to acquiring the necessary competencies for coordinating the commissioning program of the ship;
- These knowledge are required by employers on the labor market and by shipyards, to the naval architects who want to become *"commissioning coordinators"* in a shipyard.

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percentage of the final grade		
10.4 Lecture	Written assessment	Written exam. The student has to answer to 40 questions. Each answer is marked with 0.225 points. The final mark is the sum of the points obtained, plus a suplimentary point.	80%		
10.5 Laboratory	Practical aplications	Reports of technological analysis of the performed commissioning tests, for improving the quality, reducing the duration of commissioning and the related costs.	20%		
10.6 Minimum performance standard					
• Presentation at the written exam is conditioned by attendance at Laboratories;					
• The written exam should be graded at least with 5.					

OFFICIAL GAZETTE OF ROMANIA, PART I, NO. 880 bis/13.XII.2011 Ministerial Order 5703 / 18.10.2011 ANNEX no. 3 to methodology

SUBJECT OUTLINE

1. Academic programme details

1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master of Engineering
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title Ethics a			nd Acad	emic Integrity			
2.2 Lecture organizer							
2.3 Seminar organizer							
2.4 Year of study	п	2.5 Semeste	er II	2.6 Type of assessment	V	2.7 Type of subject	Compulsory

3. Timpul total estimat (ore pe semestru al activităților didactice)

3.1 Total hours per week	2	where: 3.2 lecture	1	3.3 seminar		1
3.4 Total hours in the curriculum	28	where: 3.5 lecture	14	3.6 seminar	1	14
Time distribution					hc	ours
Study after manuals, syllabuses, bibl	iography and	l notes				6
Further documentation in libraries, o	n specialized	electronic platforms an	nd fieldw	ork		1
Preparing seminars, assignments, portfolios				6		
Tutorials				2		
Examinations				2		
Other activities:				-		
3.7 Total hours of individual study	17					
3.9 Total hours per semester	45					
3. 10 Number of credits	3					

4. Prerequisites (where relevant)

4. I I CI C quisites (W	+. I rerequisites (where rerevant)			
4.1 curriculum	• Not the case			
related				
4.2 competence	• Not the case			
related				

5. Conditions (where relevant)

5.1. of the lecture	Classroom, laptop, videoprojector, whiteboard	
5.2. of the seminar	Classroom, laptop, videoprojector, whiteboard	

6. Specific competences acquired

-	
Professional competences	Not the case
Transversal competences	CT1 Fulfilment in due time of the design and/or the research activities in naval architecture – 1 credit CT2 Efficient conduct of co-ordination of the design and/or the research activities in naval architecture – 1 credit CT3 Assessment of the need for professional training, in the context of the evolution of the field – 1 credit Competence to limit, identify and resolve potentially conflicting situations with ethical implications; Competencies to develop and implement codes of ethics and professional conduct.

7. Learning outcomes (as resulting from the grid of specific competences acquired)

U	
7.1 General aim of the	-Learning appropriately the ethical and academic integrity-specific concepts for their
subject	application in the development of a responsible professional career, with moral conduct being
	an important reference of professionalism;
	- Developing the ability to comprehend, use, and compare / contrast English-language editing
	techniques according to the intended product text.
7.2 Specific aims	- Developing the capabilities of knowledge, appreciation and valorisation of the main points
	of view on academic ethics;
	- Developing the skills to identify and solve problems with ethical implications (ethical
	dilemmas);
	-Acquiring the knowledge and skills necessary to understand, respect, develop, implement
	codes of ethics and professional integrity.

8. Contents

8.1 Lecture	Teaching method	Observations Number of hours
1. Presentation of topics, objectives, methods; Introduction. What is	Lecture,	C1 (2 hours)
ethics? What is Academic Ethics. What is scientific integrity? What is the	explanation,	
ethics of research? Interdisciplinary and integrative approaches.	problem, debate,	
2. Standards of integrity in the field of teaching and research activity	critical thinking	C2 (2 hours)
in higher education - Codes of ethics: errors and sanctions	development	
3. When academic ethics is broken. Causes. Examples of unethical		C3 (2 hours)
academic behavior: ethical practices and dilemmas, vulnerability and risk		
in school, university, public institutions.		
4. Ethical issues in academic research. What is Plagiarism? Why do		C4 (2 hours)
students complain? How should the phenomenon of plagiarism be		
addressed? How to search with integrity?		
5. Academic research. Data collection. Publishing and copyright.		C5 (2 hours)
6. Academic research. Citation methods. APA and MLA. Avoiding		C6 (2 hours)
plagiarism.		
7. Intellectual property. Definition. Who Owns Intellectual Property?		C7 (2 hours)
How to avoid the violation of intellectual property rights. Using of an		
sofware sistem to detect plagiarism.		
Bibliography		
1. Nituca, C., Etics and Integrity (in romanian),(http://www.euedia.tuiasi.r	o/wp-	
content/uploads/Documente_PDF_Staff/Costica_Nituca/EI_Curs_Nituc	a.pdf)	
2. Proctor, M., "Deterring Plagiarism: Some Strategies", Univer	rsity of Toronto,	2006, available at
http://www.utoronto.ca/writing/plagiarism.html		

3. Sarpe, D., Popescu D., Neagu A., Ciucur, V. – Integrity Standards of Higher University (in Romanian), online

edition, UEFISCDI, Bucharest, 2011 (http://old.uefiscdi.ro/Upload/27963931-6eb6-4a07-9e75-078a20de12b9.pdf)

- 4. Swartzlander, S. D.; Pace, D. & Stamler, V. L., "The ethics of requiring students to write about their personal lives." Chronicle of Higher Education, (February 17, 1993, B1-2).
- 5. Swayze, J.P.; Louis, K. S. & Anderson, M. S., "The ethical training of graduate students requires serious and continuing attention." Chronicle of Higher Education, (March 9, 1994, B1-4).
- 6. Sylvan Lake Associates.. "Ethical issues in research and science" (A computer-aided, self-instructional course), 1994
- Taylor, B., "Letter To My Students", based upon ideas contained in the first draft of "The Fundamental Values of Academic Integrity," a document that was developed by, and is available from, the Center for Academic Integrity, 1999, (http://www.academicintegrity.org)
- 8. CE, The Code of Ethics of the Lower Danube University in Galati, 2017

8.2 Seminar	Teaching method	Observations Number of hours
1. Brief History of Academic Ethics.	Watching documentary. Debate.	S1 (2 hours)
2. Code of ethics- Dunarea de Jos University	Debate.	S2 (2 hours)
3. Violation of academic ethics. Vulnerability and risk in school, university, public institutions.	Debate.	S3 (2 hours)
4. Academic integrity. Copying the exams. Who, how, why is he copying?	Debate.	S4 (2 hours)
5. Academic research. Citation methods. APA Avoiding plagiarism.	Watching documentary. Debate. Exercise	S5 (2 hours)
6. Academic research. Citation methods. MLA. Avoiding plagiarism.	Watching documentary. Debate. Exercise	S6 (2 hours)
7. Intellectual property. Application of SISTEMANTIPLAGIAT.RO software system	Debate Exercise	S7 (2 hours)

Bibliography

- 1. Nituca, C., Etics and Integrity (in romanian),(http://www.euedia.tuiasi.ro/wpcontent/uploads/Documente_PDF_Staff/Costica_Nituca/EI_Curs_Nituca.pdf)
- 2. Proctor, M., "Deterring Plagiarism: Some Strategies", University of Toronto, 2006, available at http://www.utoronto.ca/writing/plagiarism.html
- Sarpe, D., Popescu D., Neagu A., Ciucur, V. Integrity Standards of Higher University (in Romanian), online edition, UEFISCDI, Bucharest, 2011 (http://old.uefiscdi.ro/Upload/27963931-6eb6-4a07-9e75-078a20de12b9.pdf)
- 4. Swartzlander, S. D.; Pace, D. & Stamler, V. L., "The ethics of requiring students to write about their personal lives." Chronicle of Higher Education, (February 17, 1993, B1-2).
- 5. Swayze, J.P.; Louis, K. S. & Anderson, M. S., "The ethical training of graduate students requires serious and continuing attention." Chronicle of Higher Education, (March 9, 1994, B1-4).
- 6. Sylvan Lake Associates.. "Ethical issues in research and science" (A computer-aided, self-instructional course), 1994
- Taylor, B., "Letter To My Students", based upon ideas contained in the first draft of "The Fundamental Values of Academic Integrity," a document that was developed by, and is available from, the Center for Academic Integrity, 1999, (http://www.academicintegrity.org)
- 8. CE, Codul de etică al Universității Dunărea de Jos din Galați, 2017CE, The Code of Ethics of the Lower Danube University in Galati, 2017

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme

The content of the discipline responds to the thematic areas in the field approached at national and international level at this level of study, being prerequisites for the development of students' transversal competences.

The correctness and accuracy of using the concepts and theories perceived in the discipline of ethics and academic integrity ensures a proper conduct of the students according to the ethics of the university.

10. Assessment

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Percenta ge of the final	
10.4 Lecture	- identifying and understanding the notions and concepts taught at the course.	-active participation in the course through relevant interventions	10%	
	 solving a work task argumentative exercise; 	-adequacy and quality of resources used	10%	
10.5 Seminar	debate	- the originality of the advanced thesis and / or of the argumentative approach the local of aritical thinking accimilation and	30%	
		the capacity to integrate it into the debate of ideas - presentation of documentation from own		
		dissertation thesis using SISTEMANTIPLAGIAT.RO	50%	
10.6 Minimum performa	ance standard (Each evaluation pa	art is marked in the standard reference system 1-10.)		
-training and seminar pa	rticipation (maximum 3 absences	3)		
-training a seminar them	ie			
-rediting a argumentativ	e essay with minimal personal inv	volvement		
the acquisition of basic	the acquisition of heric knowledge on the theoretical framework and the shility to identify in general terms, the			

-the acquisition of basic knowledge on the theoretical framework and the ability to identify, in general terms, the essential elements for the interpretation of a case study.

SUBJECT OUTLINE

1. Academic programme details

· · · · · · · · · · · · · · · · · · ·	
1.1 Higher Education Institution	"Dunărea de Jos" University of Galați
1.2 Faculty	Naval Architecture / Naval Architecture
1.3 Department	Naval Architecture
1.4 Study area / Field	Naval Architecture
1.5 Programme degree	Master
1.6 Study programme / Qualification	Naval Architecture / Naval Architecture

2. Subject details

2.1 Subject title		Marine	Env	iron	mental Protection Techno	ology		
2.2 Lecture organize	er							
2.3 Seminar / Recita	tion or	ganizer						
2.4 Year of study	Π	2.5 Semes	ter	Π	2.6 Type of assessment	E + P	2.7 Type of subject	Compulsory

3. Total average time (hours of teaching activities per semester)

3.1 Total hours per week	4	where: 3.2 lecture	2	3.3 project		2
3.4 Total hours in the curriculum	56	where: 3.5 lecture	28	3.6 project		28
Time distribution					ho	ours
Study after manuals, syllabuses, bibliog	graphy and	notes				10
Further documentation in libraries, on s	pecialized	electronic platforms ar	nd fieldw	ork		5
Preparing projects, assignments, essays	, portfolios	and essays				5
Tutorials						4
Examinations						2
Other activities						0
3.7 Total hours of individual study	26					
3.9 Total hours per semester	82					
3. 10 Number of credits	3+2					

4. Prior learning / Prerequisites (where relevant)

4.1 curriculum- related	• Mechanic, Fluid Mechanic, Chemistry, Physical, Electronic, Design and info-graphics
4.2 competence- related	 Adaptation at the general concepts in naval architecture; Defining, analysis and general using of the integrated systems regarding design, calculus and analysis having as target point avoiding the environment pollution and onboard ships

5. Conditions (where relevant)

5.1. of the lecture	Room or online Microsoft Teams platform, laptop, video projector
5.2. of the project	• Analyzers for water, GPS, chronometer, noise measuring instruments, calibrators, computers, internet access, references, project guide (electronic forms)

6. Specific competences acquired

Professional competences	C6 In-depth knowledge and development of materials and technologies used in offshore engineering – 5 credits
Transversal competences	Not applicable

7. Learning outcomes (as resulting from the grid of specific competences acquired)

7.1 General aim of	C6.1 In-depth knowledge, analysis and synthesis of the types of systems used in offshore
the subject	engineering and specific technologies.
	C6.2 Analysis and evaluation of new offshore unit and offshore projects in order to identify
	optimal technological solutions.
7.2 Specific aims	C6.3 Integrated use of the information, conceptual and methodological apparatus in the
	development of innovative technologies.
	C6.4 Applying algorithms to evaluate the performances of innovative technologies in order to
	improve decision making.
	C6.5 Innovative use of specific technologies for designing projects.

8. Contents

8.1 Lecture	Teaching method	Observations hours
GREEN SHIP CONCEPT (PART 1)	PowerPoint slides	C1 (2 hours)
MARPOL Annex I: Oil pollution prevention		(
MARPOL Annex II: Pollution categorization. Ship types.		
Operational requirements		
MARPOL Annex III: Prevention of pollution by harmful substances		
carried by sea in packaged form		
MARPOL Annex IV: Sewage pollution prevention		
MARPOL Annex V. Garbage pollution prevention		
GREEN SHIP CONCEPT (PART 2)	PowerPoint slides	C^{2} (2 hours)
MARPOL Annex VI: Prevention of air pollution from shins	I Owell ollit slides	C2 (2 liouis)
SHIP ENERGY EFEICIENCY (PART 1)	PowerPoint slides	C3(2 hours)
IMO regulatory framework for shin energy efficiency	I Owell ollit slides	C5 (2 nours)
Chapter 4 of MARPOL Append VI regulations		
Guidalines for calculation of Attained FEDI		
Guidelines for varification of Attained EEDI		
Guidelines for development of SEEMD		
Guidelines for calculation of EEOI	D D 1 1 1	C(4)(21)
SHIP ENERGY EFFICIENCY (PART 2)	PowerPoint slides	C4 (2 hours)
Guidelines on EEDI Calculation and Verification		
Guidelines on SEEMP and EEOI		
SHIP ENERGY EFFICIENCY (PART 3)	PowerPoint slides	C5 (2 hours)
Guidelines on SEEMP and EEOI		
Energy and Environmentally Efficient Ship Design (Part 1)	PowerPoint slides	C6 (2 hours)
Energy efficiency –Energy balance components		
Fuels, machinery etc.		
-Modelling ship energy efficiency		
-Methods for energy saving during various phases of ship design		
Energy and Environmentally Efficient Ship Design (Part 2)	PowerPoint slides	C7 (2 hours)
Energy saving methods and energy efficient design principles		
-Largest consuming groups: propulsion etc.		
-HVAC		
-Heat process efficiency and waste heat recovery		
Environmental legislation overview and examples		
Future proof ship design principle		
GREEN SHIP CONCEPT- 8500 TEU Container ship concept study (Part 1)	PowerPoint slides	C8 (2 hours)
0.0 Introduction		
1.0 General		
2.0 Description of the A Class container ship.		
3.0 General arrangement		
4.0 Machinery arrangement		
5.0 Basic ship data		
GREEN SHIP CONCEPT- 8500 TEU Container ship concept study (Part 2)	PowerPoint slides	C9 (2 hours)
6.0 Developed energy saving and exhaust gas cleaning technologies		C) (2 110 (115)
6.1 Change of main engine incl. FGR and WIF		
6.2 Waste Heat Recovery Systems		
6.3 Scrubber system		
6.4 Turbo generator system		
6.5 Space considerations and consequences of installing WUD		
system and scrubber		
6.6 Effect of WIE and scrubber system on water demand		
6.7 Pump and cooler optimization		
CDEEN SHID CONCEDT 8500 TEL Container this concent study (Dort 2)	DoworDoint alidea	C10(2 hours)
6.0 Developed energy soving and exhaust and elegning	rowerrollit slides	C10(2 nours)
tochnologies		
6 9 Dollast tractment system		
6.0 LNC for our orgina in horizontal		
0.9 LING for aux. engine in harbor mode		

6.10 Other means to reduce propulsion power advanced rudder,		
hull devices and paint.		
6.11 Effect on electric balance		
6.12 Economical consequences associated with implementing		
emission technologies.		
6.13 Result on emissions using developed technologies.		
7.0 Emerging Technologies		
7.1 Air Lubrication and/or micro bubbles		
8.0 Operations		
8.1 Lines optimization		
8.2 Ship speed, including derating of main engine		
8.3 Fuel consumption and CO_2 emissions based on load profile		
GREEN PASSPORT (Part 1)	PowerPoint slides	C11 (2 hours)
1 Introduction	I owen ont shaes	C11 (2 liouis)
1 1 Background		
1.2 Objective		
1.2 Objective		
2 Definitions		
2. Definitions		
3. Materials to be listed in the IHM		
3.1 Recording of HM in the IHM Part I		
3.2 Threshold values of HM included in the IHM Part I		
4. Basic concepts for the development and maintenance of the IHM		
4.1 Overarching Principles		
4.2 Accreditation and Certification		
4.3 Training & Qualification		
4.4 Supplier's Declaration of Conformity and Mat. Declarations		
4.5 Sampling and analysis		
GREEN PASSPORT (Part 2)	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement	PowerPoint slides	C12 (2 hours)
 GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 	PowerPoint slides	C12 (2 hours)
 GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRB 	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1)	PowerPoint slides	C12 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits	PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part III 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report Appendix 1 - Format for Noise Survey Report	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report Appendix 2 - Guidance on the Inclusion of Noise Issues in Safety Management Systems	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report Appendix 2 - Guidance on the Inclusion of Noise Issues in Safety Management Systems Appendix 3 - Suggested Methods Of Controlling Noise Exposure	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 4 - Maximum Acceptable Sound Pressure Levels Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report Appendix 2 - Guidance on the Inclusion of Noise Issues in Safety Management Systems Appendix 3 - Suggested Methods Of Controlling Noise Exposure Appendix 4 - Simplified Procedure for Determining Noise Exposure	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)
GREEN PASSPORT (Part 2) 5. Development and maintenance process of the IHM 5.1 Development process of the IHM Part I for New Ships 5.2 Development process of the IHM Part I for Existing Ships 5.3 Development process of the IHM Part II 5.4 Development process of the IHM Part II 5.5 Life cycle management 6. Survey and Certification 7. Enforcement 7.1 Port State Control in accordance with Directive 2009/16/EC 7.2 Port State Control in accordance with the SRR CODE ON NOISE LEVELS ON BOARD SHIP (Part 1) Chapter 1 - General Chapter 2 - Measuring Equipment Chapter 3 - Measurement Chapter 5 - Noise Exposure Limits CODE ON NOISE LEVELS ON BOARD SHIP (Part 2) Chapter 6 - Acoustic Insulation Between Accommodation Spaces Chapter 7 - Ear Protection and Warning Information Appendix 1 - Format for Noise Survey Report Appendix 2 - Guidance on the Inclusion of Noise Issues in Safety Management Systems Appendix 3 - Suggested Methods Of Controlling Noise Exposure Appendix 4 - Simplified Procedure for Determining Noise Exposure Appendix 5 - Provisional Guidelines on Maximum Acceptable	PowerPoint slides PowerPoint slides PowerPoint slides	C12 (2 hours) C13 (2 hours) C14 (2 hours)

References

- 1. MARPOL 73/78 Annex VI Directive 2005/33/EC;
- 2. MEPC of the IMO, Chapter 4 from MARPOL Annex VI;
- 3. Lattanzio R.K., "Clean Air Act: A Summary of the Act and Its Major Requirements", Congressional Research Service (CRS), 2022
- 4. Kjølholt, J., Aakre, S., Jürgensen, C., Lauridsen, J. "Assessment of possible impacts of scrubber water discharges on the marine environment", Miljøstyrelsen Denmark, 2012;
- 5. MARPOL CONSOLIDATED EDITION, I.M.O., 2006
- 6. Marine Environment Protection Committee (MEPC);
- 7. MEPC 59th session, July 2009;
- 8. Resolution MEPC 212 (63), 2012 GUIDELINES ON THE METHOD OF CALCULATION OF THE ATTAINED ENERGY EFFICIENCY DESIGN INDEX (EEDI) FOR NEW SHIPS;

		nouis
 -Individual allocation of a ship from the following categories: oil tanker, bulk carrier, carrier container vessels, tugs, at free will of master student. -Defining the tests / analysis needed for ship evaluation by pollution viewpoint. -Calculus of the EEDI index for a new ship, chosen at P1, -Study of the actual regulations and describe at least 2 technology methods for improving the ship efficiency and estimate how much will be improved EEDI index. -Naval traffic noise measurements on Danube River shore, -Water river analysis; certificate model. -Sea water analysis; certificate model. -TDS water quality tester; calibration method. -Debate of project with every master student. 	es study, anations, elopment of the cal thinking	P1 (2hours) P2 (2hours) P3 (2hours) P4 (2hours) P5 (2hours) P6 (2hours) P7 (2hours) P8 (2hours) P9 (2hours) P10 (2hours) P11 (2hours) P12 (2hours) P13 (2hours)

References

- 1. Commission for Environmental Cooperation (2001) *The North American Mosaic: A State of the Environment Report* (Commission for Environmental Cooperation, Montreal);
- 2. Kristenen H.O. (2015) *Energy demand and exhaust gas emissions of marine engines* (HOK Marineconsult ApS, Technical University of Denmark);
- 3. Technological University of Denmark (DTU) &University of Southern Denmark (2013) "Calculation tool for assessment of ships' energy consumption and fuel gas emissions, including CO_2_(EEDI)", (Danish Maritime Fund);
- 4. Olmer, N., Comer, B., Roy, B., Mao, X. & Rutherford, D. *Greenhouse Gas Emissions from Global Shipping*, 2013–2015 (ICCT, 2017);
- 5. Procedure for calculation and verification of the Energy Efficiency Design Index (EEDI), (Rev.1- 2016) *"2015 Industry Guidelines for calculation and verification of EEDI"*

9. Subject relevance to the epistemic community representatives, to professional associations and main employers in fields significant for the programme.

The object has a strong educational character in order to model a good research and practitioner master student in naval architecture domain. The object has three experimental chapters: calculus of EEDI index for a new ship, the noise influence of port activities upon human adjacent communities and water analysis.

The purpose is that the master student to accumulate the practical knowledgeable regarding the environment pollution (EEDI index and environmental parameters) by lectures and project activities. By the content, the object desires to assure to master student, via lectures activities and project, the following knowledges, and abilities:

- acquiring the main parameters regarding ship energy efficiency, case study.

- acquiring evaluation procedures to measure water quality.

- acquiring methods to evaluate the influence of noise generated by port activities (loading-unloading, transport on

roads and railways, crane lifting, vessels maneuverings etc.) upon adjacent human collectives.

- acquiring processing techniques of data resulted from measurements of traffic noise, case study.

- acquiring the knowledge for the assessment of environment by pollution point of view

These competencies are required on the work market by employers, from Romania or foreign, involved in research and design activities in naval architecture field, employers which build and/or repair ships.

			10.3	
Activity	10.1 Assessment criteria	10.2 Assessment methods	Percentage of	
			the final grade	
	- understanding and	The final examination is composed of	30%	
	assimilation of particulars	two items as followings:		
	knowledge of the subject	- verification by a case study of the		
	- building the basis of	environment assessment and analysis		
	reasoning needed in design	abilities.		
10.4 Lecture	and research activities for the	- level of techniques knowledge in		
	analysis of pollution,	environment evaluation by pollution		
	according to criteria of naval	viewpoint onboard ship.		
	classification societies (Tier	Presence at lectures, debates	30%	
	curves)	participation, stimulation of critical		
		reflection		
	Presence at all project hours	Work in teams of 4 - 6 master students	20%	
		per instruments group		
10.5 Project	Elaboration of the project	Project evaluation which quantifies the	20%	
		implication and validation of results. In		
		addition the master student shows the		
		final content of the project.		
10.6 Minimum performance standard (Every item is standard recorded in the reference system 1 - 10)				
 The master student must perform all project hours and must finalize the project. 				
• Final examination and the project must be graduated with grade 5.				